James McCool commited on
Commit
34b8899
·
1 Parent(s): a9ee089

Refactor init_team_data and init_player_data functions in app.py to accept game_count as a parameter. This change improves function clarity and ensures consistent handling of game count across team and player data initialization. Updated function calls in the simulation logic to reflect this modification.

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -164,8 +164,8 @@ def simulate_stats(row, num_sims=1000):
164
  return pd.Series(results)
165
 
166
  @st.cache_data(ttl = 60)
167
- def init_team_data(team, opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date):
168
- game_count = len(kill_predictions)
169
  overall_team_data = pd.DataFrame(columns = ['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj'])
170
  # Convert date objects to datetime strings in the correct format
171
  start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
@@ -376,8 +376,8 @@ def init_team_data(team, opponent, win_loss_settings, kill_predictions, death_pr
376
  return overall_team_data.dropna().set_index('playername'), opp_boosts, results_dict
377
 
378
  @st.cache_data(ttl = 60)
379
- def init_player_data(players, opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date):
380
- game_count = len(kill_predictions)
381
  overall_team_data = pd.DataFrame(columns = ['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj'])
382
  # Convert date objects to datetime strings in the correct format
383
  start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
@@ -592,9 +592,9 @@ if st.button("Load/Reset Data", key='reset1'):
592
 
593
  if st.button("Run"):
594
  if data_type == "Team":
595
- team_data, opp_boost, results_dict = init_team_data(selected_team, selected_opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date)
596
  else:
597
- team_data, opp_boost, results_dict = init_player_data(selected_players, selected_opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date)
598
 
599
  player_summary = pd.DataFrame()
600
  for game_num in range(game_count):
 
164
  return pd.Series(results)
165
 
166
  @st.cache_data(ttl = 60)
167
+ def init_team_data(game_count, team, opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date):
168
+ game_count = game_count
169
  overall_team_data = pd.DataFrame(columns = ['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj'])
170
  # Convert date objects to datetime strings in the correct format
171
  start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
 
376
  return overall_team_data.dropna().set_index('playername'), opp_boosts, results_dict
377
 
378
  @st.cache_data(ttl = 60)
379
+ def init_player_data(game_count, players, opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date):
380
+ game_count = game_count
381
  overall_team_data = pd.DataFrame(columns = ['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj'])
382
  # Convert date objects to datetime strings in the correct format
383
  start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
 
592
 
593
  if st.button("Run"):
594
  if data_type == "Team":
595
+ team_data, opp_boost, results_dict = init_team_data(game_count, selected_team, selected_opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date)
596
  else:
597
+ team_data, opp_boost, results_dict = init_player_data(game_count, selected_players, selected_opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date)
598
 
599
  player_summary = pd.DataFrame()
600
  for game_num in range(game_count):