Spaces:
Running
Running
James McCool
commited on
Commit
·
46e893a
1
Parent(s):
cd69a95
Enhance opponent performance data display in init_team_data function of app.py. Added a DataFrame to output opponent-specific metrics for kills, deaths, assists, and CS projections during both win and loss scenarios. Updated the return statement to include this new DataFrame, allowing for a more comprehensive analysis of opponent performance alongside team data. This change improves the visibility and usability of performance metrics for informed decision-making.
Browse files
app.py
CHANGED
@@ -241,7 +241,16 @@ def init_team_data(team, opponent, win_loss, kill_prediction, death_prediction,
|
|
241 |
opp_pos_deaths_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_deaths_boost_pos']))
|
242 |
opp_pos_assists_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_assists_boost_pos']))
|
243 |
opp_pos_cs_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_total_cs_boost_pos']))
|
244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
if kill_prediction > 0:
|
247 |
player_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kill_share_win', 'playername_avg_death_share_win','playername_avg_assist_share_win',
|
@@ -284,7 +293,12 @@ def init_team_data(team, opponent, win_loss, kill_prediction, death_prediction,
|
|
284 |
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
|
285 |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
|
286 |
|
287 |
-
return team_data.dropna().set_index('playername')
|
288 |
|
289 |
if st.button("Run"):
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
241 |
opp_pos_deaths_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_deaths_boost_pos']))
|
242 |
opp_pos_assists_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_assists_boost_pos']))
|
243 |
opp_pos_cs_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_total_cs_boost_pos']))
|
244 |
+
opp_boosts = pd.DataFrame({
|
245 |
+
'opp_pos_kills_boost_win': opp_pos_kills_boost_win,
|
246 |
+
'opp_pos_deaths_boost_win': opp_pos_deaths_boost_win,
|
247 |
+
'opp_pos_assists_boost_win': opp_pos_assists_boost_win,
|
248 |
+
'opp_pos_cs_boost_win': opp_pos_cs_boost_win,
|
249 |
+
'opp_pos_kills_boost_loss': opp_pos_kills_boost_loss,
|
250 |
+
'opp_pos_deaths_boost_loss': opp_pos_deaths_boost_loss,
|
251 |
+
'opp_pos_assists_boost_loss': opp_pos_assists_boost_loss,
|
252 |
+
'opp_pos_cs_boost_loss': opp_pos_cs_boost_loss
|
253 |
+
}).set_index(pd.Index(list(opp_pos_kills_boost_win.keys()), name='position'))
|
254 |
|
255 |
if kill_prediction > 0:
|
256 |
player_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kill_share_win', 'playername_avg_death_share_win','playername_avg_assist_share_win',
|
|
|
293 |
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
|
294 |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
|
295 |
|
296 |
+
return team_data.dropna().set_index('playername'), opp_boosts
|
297 |
|
298 |
if st.button("Run"):
|
299 |
+
team_data, opp_boost = init_team_data(selected_team, selected_opponent, win_loss, kill_prediction, death_prediction, start_date, end_date)
|
300 |
+
tab1, tab2 = st.tabs(["Team Data", "Opponent Data"])
|
301 |
+
with tab1:
|
302 |
+
st.dataframe(team_data.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)
|
303 |
+
with tab2:
|
304 |
+
st.dataframe(opp_boost.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|