James McCool commited on
Commit
46e893a
·
1 Parent(s): cd69a95

Enhance opponent performance data display in init_team_data function of app.py. Added a DataFrame to output opponent-specific metrics for kills, deaths, assists, and CS projections during both win and loss scenarios. Updated the return statement to include this new DataFrame, allowing for a more comprehensive analysis of opponent performance alongside team data. This change improves the visibility and usability of performance metrics for informed decision-making.

Browse files
Files changed (1) hide show
  1. app.py +17 -3
app.py CHANGED
@@ -241,7 +241,16 @@ def init_team_data(team, opponent, win_loss, kill_prediction, death_prediction,
241
  opp_pos_deaths_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_deaths_boost_pos']))
242
  opp_pos_assists_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_assists_boost_pos']))
243
  opp_pos_cs_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_total_cs_boost_pos']))
244
-
 
 
 
 
 
 
 
 
 
245
 
246
  if kill_prediction > 0:
247
  player_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kill_share_win', 'playername_avg_death_share_win','playername_avg_assist_share_win',
@@ -284,7 +293,12 @@ def init_team_data(team, opponent, win_loss, kill_prediction, death_prediction,
284
  team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
285
  team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
286
 
287
- return team_data.dropna().set_index('playername')
288
 
289
  if st.button("Run"):
290
- st.dataframe(init_team_data(selected_team, selected_opponent, win_loss, kill_prediction, death_prediction, start_date, end_date).style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)
 
 
 
 
 
 
241
  opp_pos_deaths_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_deaths_boost_pos']))
242
  opp_pos_assists_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_assists_boost_pos']))
243
  opp_pos_cs_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_total_cs_boost_pos']))
244
+ opp_boosts = pd.DataFrame({
245
+ 'opp_pos_kills_boost_win': opp_pos_kills_boost_win,
246
+ 'opp_pos_deaths_boost_win': opp_pos_deaths_boost_win,
247
+ 'opp_pos_assists_boost_win': opp_pos_assists_boost_win,
248
+ 'opp_pos_cs_boost_win': opp_pos_cs_boost_win,
249
+ 'opp_pos_kills_boost_loss': opp_pos_kills_boost_loss,
250
+ 'opp_pos_deaths_boost_loss': opp_pos_deaths_boost_loss,
251
+ 'opp_pos_assists_boost_loss': opp_pos_assists_boost_loss,
252
+ 'opp_pos_cs_boost_loss': opp_pos_cs_boost_loss
253
+ }).set_index(pd.Index(list(opp_pos_kills_boost_win.keys()), name='position'))
254
 
255
  if kill_prediction > 0:
256
  player_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kill_share_win', 'playername_avg_death_share_win','playername_avg_assist_share_win',
 
293
  team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
294
  team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
295
 
296
+ return team_data.dropna().set_index('playername'), opp_boosts
297
 
298
  if st.button("Run"):
299
+ team_data, opp_boost = init_team_data(selected_team, selected_opponent, win_loss, kill_prediction, death_prediction, start_date, end_date)
300
+ tab1, tab2 = st.tabs(["Team Data", "Opponent Data"])
301
+ with tab1:
302
+ st.dataframe(team_data.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)
303
+ with tab2:
304
+ st.dataframe(opp_boost.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)