Spaces:
Running
Running
James McCool
commited on
Commit
·
4b70cc2
1
Parent(s):
71875ff
Enhance team data analysis in app.py by adding opponent selection and refining statistical calculations. Introduced a select box for choosing opponents, updated the init_team_data function to include opponent data in performance metrics, and streamlined calculations for kills, deaths, assists, and total CS. This improves the depth and usability of team performance evaluations.
Browse files
app.py
CHANGED
@@ -64,6 +64,13 @@ with st.sidebar:
|
|
64 |
index=team_names.index("T1") if "T1" in team_names else 0
|
65 |
)
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
st.subheader("Prediction Settings")
|
68 |
win_loss = st.selectbox(
|
69 |
"Select Win/Loss",
|
@@ -96,7 +103,7 @@ with st.sidebar:
|
|
96 |
)
|
97 |
|
98 |
@st.cache_data(ttl = 60)
|
99 |
-
def init_team_data(team, win_loss, kill_prediction, death_prediction, start_date, end_date):
|
100 |
|
101 |
# Convert date objects to datetime strings in the correct format
|
102 |
start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
|
@@ -104,191 +111,201 @@ def init_team_data(team, win_loss, kill_prediction, death_prediction, start_date
|
|
104 |
|
105 |
collection = db["gamelogs"]
|
106 |
cursor = collection.find({"teamname": team, "date": {"$gte": start_datetime, "$lte": end_datetime}})
|
107 |
-
|
108 |
raw_display = pd.DataFrame(list(cursor))
|
109 |
-
calc_columns = ['kills', 'deaths', 'assists', 'total_cs']
|
110 |
-
league_win_stats = {}
|
111 |
-
league_loss_stats = {}
|
112 |
-
league_pos_win_stats = {}
|
113 |
-
league_pos_loss_stats = {}
|
114 |
-
Opponent_win_allowed_stats = {}
|
115 |
-
Opponent_loss_allowed_stats = {}
|
116 |
-
Opponent_pos_win_allowed_stats = {}
|
117 |
-
Opponent_pos_loss_allowed_stats = {}
|
118 |
-
playername_win_stats = {}
|
119 |
-
playername_loss_stats = {}
|
120 |
-
teamname_win_stats = {}
|
121 |
-
teamname_loss_stats = {}
|
122 |
-
|
123 |
-
for stats in calc_columns:
|
124 |
-
league_win_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] != 'team')].groupby('league')[stats].mean().to_dict()
|
125 |
-
league_loss_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] != 'team')].groupby('league')[stats].mean().to_dict()
|
126 |
-
Opponent_win_allowed_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] != 'team')].groupby('Opponent')[stats].mean().to_dict()
|
127 |
-
Opponent_loss_allowed_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] != 'team')].groupby('Opponent')[stats].mean().to_dict()
|
128 |
-
|
129 |
-
for stats in calc_columns:
|
130 |
-
league_pos_win_stats[stats] = {
|
131 |
-
league: group.groupby('position')[stats].mean().to_dict()
|
132 |
-
for league, group in raw_display[raw_display['result'] == 1].groupby('league')
|
133 |
-
}
|
134 |
-
league_pos_loss_stats[stats] = {
|
135 |
-
league: group.groupby('position')[stats].mean().to_dict()
|
136 |
-
for league, group in raw_display[raw_display['result'] == 0].groupby('league')
|
137 |
-
}
|
138 |
-
|
139 |
-
Opponent_pos_win_allowed_stats[stats] = {
|
140 |
-
opponent: group.groupby('position')[stats].mean().to_dict()
|
141 |
-
for opponent, group in raw_display[raw_display['result'] == 1].groupby('Opponent')
|
142 |
-
}
|
143 |
-
Opponent_pos_loss_allowed_stats[stats] = {
|
144 |
-
opponent: group.groupby('position')[stats].mean().to_dict()
|
145 |
-
for opponent, group in raw_display[raw_display['result'] == 0].groupby('Opponent')
|
146 |
-
}
|
147 |
-
|
148 |
-
for stats in calc_columns:
|
149 |
-
playername_win_stats[stats] = raw_display[raw_display['result'] == 1].groupby(['playername'])[stats].mean().to_dict()
|
150 |
-
playername_loss_stats[stats] = raw_display[raw_display['result'] == 0].groupby(['playername'])[stats].mean().to_dict()
|
151 |
-
teamname_win_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
|
152 |
-
teamname_loss_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
|
153 |
-
|
154 |
-
for stat in calc_columns:
|
155 |
-
|
156 |
-
column_name = f'league_avg_{stat}_win'
|
157 |
-
raw_display[column_name] = raw_display.apply(
|
158 |
-
lambda row: league_win_stats[stat].get(row['league'], 0),
|
159 |
-
axis=1
|
160 |
-
)
|
161 |
-
|
162 |
-
column_name = f'league_avg_{stat}_loss'
|
163 |
-
raw_display[column_name] = raw_display.apply(
|
164 |
-
lambda row: league_loss_stats[stat].get(row['league'], 0),
|
165 |
-
axis=1
|
166 |
-
)
|
167 |
-
|
168 |
-
column_name = f'Opponent_avg_{stat}_allowed_win'
|
169 |
-
raw_display[column_name] = raw_display.apply(
|
170 |
-
lambda row: Opponent_win_allowed_stats[stat].get(row['Opponent'], 0),
|
171 |
-
axis=1
|
172 |
-
)
|
173 |
-
|
174 |
-
column_name = f'Opponent_avg_{stat}_allowed_loss'
|
175 |
-
raw_display[column_name] = raw_display.apply(
|
176 |
-
lambda row: Opponent_loss_allowed_stats[stat].get(row['Opponent'], 0),
|
177 |
-
axis=1
|
178 |
-
)
|
179 |
-
|
180 |
-
column_name = f'league_pos_avg_{stat}_win'
|
181 |
-
raw_display[column_name] = raw_display.apply(
|
182 |
-
lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0),
|
183 |
-
axis=1
|
184 |
-
)
|
185 |
-
|
186 |
-
column_name = f'league_pos_avg_{stat}_loss'
|
187 |
-
raw_display[column_name] = raw_display.apply(
|
188 |
-
lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0),
|
189 |
-
axis=1
|
190 |
-
)
|
191 |
-
|
192 |
-
column_name = f'Opponent_pos_avg_{stat}_allowed_win'
|
193 |
-
raw_display[column_name] = raw_display.apply(
|
194 |
-
lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
|
195 |
-
axis=1
|
196 |
-
)
|
197 |
-
|
198 |
-
column_name = f'Opponent_pos_avg_{stat}_allowed_loss'
|
199 |
-
raw_display[column_name] = raw_display.apply(
|
200 |
-
lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
|
201 |
-
axis=1
|
202 |
-
)
|
203 |
-
|
204 |
-
column_name = f'playername_avg_{stat}_win'
|
205 |
-
raw_display[column_name] = raw_display.apply(
|
206 |
-
lambda row: playername_win_stats[stat].get(row['playername'], 0),
|
207 |
-
axis=1
|
208 |
-
)
|
209 |
-
|
210 |
-
column_name = f'playername_avg_{stat}_loss'
|
211 |
-
raw_display[column_name] = raw_display.apply(
|
212 |
-
lambda row: playername_loss_stats[stat].get(row['playername'], 0),
|
213 |
-
axis=1
|
214 |
-
)
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
-
raw_display['overall_win_kills_boost'] = raw_display['Opponent_avg_kills_allowed_win'] / raw_display['league_avg_kills_win']
|
229 |
-
raw_display['overall_win_deaths_boost'] = raw_display['Opponent_avg_deaths_allowed_win'] / raw_display['league_avg_deaths_win']
|
230 |
-
raw_display['overall_win_assists_boost'] = raw_display['Opponent_avg_assists_allowed_win'] / raw_display['league_avg_assists_win']
|
231 |
-
raw_display['overall_win_total_cs_boost'] = raw_display['Opponent_avg_total_cs_allowed_win'] / raw_display['league_avg_total_cs_win']
|
232 |
-
raw_display['overall_loss_kills_boost'] = raw_display['Opponent_avg_kills_allowed_loss'] / raw_display['league_avg_kills_loss']
|
233 |
-
raw_display['overall_loss_deaths_boost'] = raw_display['Opponent_avg_deaths_allowed_loss'] / raw_display['league_avg_deaths_loss']
|
234 |
-
raw_display['overall_loss_assists_boost'] = raw_display['Opponent_avg_assists_allowed_loss'] / raw_display['league_avg_assists_loss']
|
235 |
-
raw_display['overall_loss_total_cs_boost'] = raw_display['Opponent_avg_total_cs_allowed_loss'] / raw_display['league_avg_total_cs_loss']
|
236 |
-
|
237 |
-
raw_display['overall_win_kills_boost_pos'] = raw_display['Opponent_pos_avg_kills_allowed_win'] / raw_display['league_pos_avg_kills_win']
|
238 |
-
raw_display['overall_win_deaths_boost_pos'] = raw_display['Opponent_pos_avg_deaths_allowed_win'] / raw_display['league_pos_avg_deaths_win']
|
239 |
-
raw_display['overall_win_assists_boost_pos'] = raw_display['Opponent_pos_avg_assists_allowed_win'] / raw_display['league_pos_avg_assists_win']
|
240 |
-
raw_display['overall_win_total_cs_boost_pos'] = raw_display['Opponent_pos_avg_total_cs_allowed_win'] / raw_display['league_pos_avg_total_cs_win']
|
241 |
-
raw_display['overall_loss_kills_boost_pos'] = raw_display['Opponent_pos_avg_kills_allowed_loss'] / raw_display['league_pos_avg_kills_loss']
|
242 |
-
raw_display['overall_loss_deaths_boost_pos'] = raw_display['Opponent_pos_avg_deaths_allowed_loss'] / raw_display['league_pos_avg_deaths_loss']
|
243 |
-
raw_display['overall_loss_assists_boost_pos'] = raw_display['Opponent_pos_avg_assists_allowed_loss'] / raw_display['league_pos_avg_assists_loss']
|
244 |
-
raw_display['overall_loss_total_cs_boost_pos'] = raw_display['Opponent_pos_avg_total_cs_allowed_loss'] / raw_display['league_pos_avg_total_cs_loss']
|
245 |
-
|
246 |
-
raw_display['playername_avg_kill_share_win'] = raw_display['playername_avg_kills_win'] / raw_display['teamname_avg_kills_win']
|
247 |
-
raw_display['playername_avg_death_share_win'] = raw_display['playername_avg_deaths_win'] / raw_display['teamname_avg_deaths_win']
|
248 |
-
raw_display['playername_avg_assist_share_win'] = raw_display['playername_avg_assists_win'] / raw_display['teamname_avg_kills_win']
|
249 |
-
raw_display['playername_avg_cs_share_win'] = raw_display['playername_avg_total_cs_win'] / raw_display['teamname_avg_total_cs_win']
|
250 |
-
raw_display['playername_avg_kill_share_loss'] = raw_display['playername_avg_kills_loss'] / raw_display['teamname_avg_kills_loss']
|
251 |
-
raw_display['playername_avg_death_share_loss'] = raw_display['playername_avg_deaths_loss'] / raw_display['teamname_avg_deaths_loss']
|
252 |
-
raw_display['playername_avg_assist_share_loss'] = raw_display['playername_avg_assists_loss'] / raw_display['teamname_avg_kills_loss']
|
253 |
-
raw_display['playername_avg_cs_share_loss'] = raw_display['playername_avg_total_cs_loss'] / raw_display['teamname_avg_total_cs_loss']
|
254 |
if kill_prediction > 0:
|
255 |
-
|
256 |
'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
|
257 |
-
|
258 |
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%',
|
259 |
'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
|
260 |
-
team_data =
|
261 |
|
262 |
if win_loss == "Win":
|
263 |
team_data['Kill_Proj'] = team_data['wKill%'] * kill_prediction
|
264 |
team_data['Death_Proj'] = team_data['wDeath%'] * death_prediction
|
265 |
team_data['Assist_Proj'] = team_data['wAssist%'] * kill_prediction
|
266 |
-
team_data = team_data[['playername', 'teamname', '
|
267 |
else:
|
268 |
team_data['Kill_Proj'] = team_data['lKill%'] * kill_prediction
|
269 |
team_data['Death_Proj'] = team_data['lDeath%'] * death_prediction
|
270 |
team_data['Assist_Proj'] = team_data['lAssist%'] * kill_prediction
|
271 |
-
team_data = team_data[['playername', 'teamname', '
|
272 |
else:
|
273 |
-
|
274 |
'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']]
|
275 |
-
|
276 |
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%',
|
277 |
'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
|
278 |
-
team_data =
|
279 |
|
280 |
if win_loss == "Win":
|
281 |
team_data['Kill_Proj'] = team_data['wKill%']
|
282 |
team_data['Death_Proj'] = team_data['wDeath%']
|
283 |
team_data['Assist_Proj'] = team_data['wAssist%']
|
284 |
-
team_data = team_data[['playername', 'teamname', '
|
285 |
else:
|
286 |
team_data['Kill_Proj'] = team_data['lKill%']
|
287 |
team_data['Death_Proj'] = team_data['lDeath%']
|
288 |
team_data['Assist_Proj'] = team_data['lAssist%']
|
289 |
-
team_data = team_data[['playername', 'teamname', '
|
290 |
|
291 |
return team_data.dropna().reset_index(drop=True)
|
292 |
|
293 |
if st.button("Run"):
|
294 |
-
st.dataframe(init_team_data(selected_team, win_loss, kill_prediction, death_prediction, start_date, end_date).style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)
|
|
|
64 |
index=team_names.index("T1") if "T1" in team_names else 0
|
65 |
)
|
66 |
|
67 |
+
selected_opponent = st.selectbox(
|
68 |
+
"Select Opponent",
|
69 |
+
options=team_names,
|
70 |
+
index=team_names.index("T1") if "T1" in team_names else 0
|
71 |
+
)
|
72 |
+
|
73 |
+
|
74 |
st.subheader("Prediction Settings")
|
75 |
win_loss = st.selectbox(
|
76 |
"Select Win/Loss",
|
|
|
103 |
)
|
104 |
|
105 |
@st.cache_data(ttl = 60)
|
106 |
+
def init_team_data(team, opponent, win_loss, kill_prediction, death_prediction, start_date, end_date):
|
107 |
|
108 |
# Convert date objects to datetime strings in the correct format
|
109 |
start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
|
|
|
111 |
|
112 |
collection = db["gamelogs"]
|
113 |
cursor = collection.find({"teamname": team, "date": {"$gte": start_datetime, "$lte": end_datetime}})
|
|
|
114 |
raw_display = pd.DataFrame(list(cursor))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
cursor = collection.find({"Opponent": opponent, "date": {"$gte": start_datetime, "$lte": end_datetime}})
|
117 |
+
raw_opponent = pd.DataFrame(list(cursor))
|
118 |
+
|
119 |
+
for tables in [raw_display, raw_opponent]:
|
120 |
+
calc_columns = ['kills', 'deaths', 'assists', 'total_cs']
|
121 |
+
league_win_stats = {}
|
122 |
+
league_loss_stats = {}
|
123 |
+
league_pos_win_stats = {}
|
124 |
+
league_pos_loss_stats = {}
|
125 |
+
Opponent_win_allowed_stats = {}
|
126 |
+
Opponent_loss_allowed_stats = {}
|
127 |
+
Opponent_pos_win_allowed_stats = {}
|
128 |
+
Opponent_pos_loss_allowed_stats = {}
|
129 |
+
playername_win_stats = {}
|
130 |
+
playername_loss_stats = {}
|
131 |
+
teamname_win_stats = {}
|
132 |
+
teamname_loss_stats = {}
|
133 |
+
|
134 |
+
for stats in calc_columns:
|
135 |
+
league_win_stats[stats] = tables[(tables['result'] == 1) & (tables['position'] != 'team')].groupby('league')[stats].mean().to_dict()
|
136 |
+
league_loss_stats[stats] = tables[(tables['result'] == 0) & (tables['position'] != 'team')].groupby('league')[stats].mean().to_dict()
|
137 |
+
Opponent_win_allowed_stats[stats] = tables[(tables['result'] == 1) & (tables['position'] != 'team')].groupby('Opponent')[stats].mean().to_dict()
|
138 |
+
Opponent_loss_allowed_stats[stats] = tables[(tables['result'] == 0) & (tables['position'] != 'team')].groupby('Opponent')[stats].mean().to_dict()
|
139 |
+
|
140 |
+
for stats in calc_columns:
|
141 |
+
league_pos_win_stats[stats] = {
|
142 |
+
league: group.groupby('position')[stats].mean().to_dict()
|
143 |
+
for league, group in tables[tables['result'] == 1].groupby('league')
|
144 |
+
}
|
145 |
+
league_pos_loss_stats[stats] = {
|
146 |
+
league: group.groupby('position')[stats].mean().to_dict()
|
147 |
+
for league, group in tables[tables['result'] == 0].groupby('league')
|
148 |
+
}
|
149 |
+
|
150 |
+
Opponent_pos_win_allowed_stats[stats] = {
|
151 |
+
opponent: group.groupby('position')[stats].mean().to_dict()
|
152 |
+
for opponent, group in tables[tables['result'] == 1].groupby('Opponent')
|
153 |
+
}
|
154 |
+
Opponent_pos_loss_allowed_stats[stats] = {
|
155 |
+
opponent: group.groupby('position')[stats].mean().to_dict()
|
156 |
+
for opponent, group in tables[tables['result'] == 0].groupby('Opponent')
|
157 |
+
}
|
158 |
+
|
159 |
+
for stats in calc_columns:
|
160 |
+
playername_win_stats[stats] = tables[tables['result'] == 1].groupby(['playername'])[stats].mean().to_dict()
|
161 |
+
playername_loss_stats[stats] = tables[tables['result'] == 0].groupby(['playername'])[stats].mean().to_dict()
|
162 |
+
teamname_win_stats[stats] = tables[(tables['result'] == 1) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
|
163 |
+
teamname_loss_stats[stats] = tables[(tables['result'] == 0) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
|
164 |
+
|
165 |
+
for stat in calc_columns:
|
166 |
+
|
167 |
+
column_name = f'league_avg_{stat}_win'
|
168 |
+
tables[column_name] = tables.apply(
|
169 |
+
lambda row: league_win_stats[stat].get(row['league'], 0),
|
170 |
+
axis=1
|
171 |
+
)
|
172 |
+
|
173 |
+
column_name = f'league_avg_{stat}_loss'
|
174 |
+
tables[column_name] = tables.apply(
|
175 |
+
lambda row: league_loss_stats[stat].get(row['league'], 0),
|
176 |
+
axis=1
|
177 |
+
)
|
178 |
+
|
179 |
+
column_name = f'Opponent_avg_{stat}_allowed_win'
|
180 |
+
tables[column_name] = tables.apply(
|
181 |
+
lambda row: Opponent_win_allowed_stats[stat].get(row['Opponent'], 0),
|
182 |
+
axis=1
|
183 |
+
)
|
184 |
+
|
185 |
+
column_name = f'Opponent_avg_{stat}_allowed_loss'
|
186 |
+
tables[column_name] = tables.apply(
|
187 |
+
lambda row: Opponent_loss_allowed_stats[stat].get(row['Opponent'], 0),
|
188 |
+
axis=1
|
189 |
+
)
|
190 |
+
|
191 |
+
column_name = f'league_pos_avg_{stat}_win'
|
192 |
+
tables[column_name] = tables.apply(
|
193 |
+
lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0),
|
194 |
+
axis=1
|
195 |
+
)
|
196 |
+
|
197 |
+
column_name = f'league_pos_avg_{stat}_loss'
|
198 |
+
tables[column_name] = tables.apply(
|
199 |
+
lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0),
|
200 |
+
axis=1
|
201 |
+
)
|
202 |
+
|
203 |
+
column_name = f'Opponent_pos_avg_{stat}_allowed_win'
|
204 |
+
tables[column_name] = tables.apply(
|
205 |
+
lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
|
206 |
+
axis=1
|
207 |
+
)
|
208 |
+
|
209 |
+
column_name = f'Opponent_pos_avg_{stat}_allowed_loss'
|
210 |
+
tables[column_name] = tables.apply(
|
211 |
+
lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
|
212 |
+
axis=1
|
213 |
+
)
|
214 |
+
|
215 |
+
column_name = f'playername_avg_{stat}_win'
|
216 |
+
tables[column_name] = tables.apply(
|
217 |
+
lambda row: playername_win_stats[stat].get(row['playername'], 0),
|
218 |
+
axis=1
|
219 |
+
)
|
220 |
+
|
221 |
+
column_name = f'playername_avg_{stat}_loss'
|
222 |
+
tables[column_name] = tables.apply(
|
223 |
+
lambda row: playername_loss_stats[stat].get(row['playername'], 0),
|
224 |
+
axis=1
|
225 |
+
)
|
226 |
+
|
227 |
+
column_name = f'teamname_avg_{stat}_win'
|
228 |
+
tables[column_name] = tables.apply(
|
229 |
+
lambda row: teamname_win_stats[stat].get(row['teamname'], 0),
|
230 |
+
axis=1
|
231 |
+
)
|
232 |
+
|
233 |
+
column_name = f'teamname_avg_{stat}_loss'
|
234 |
+
tables[column_name] = tables.apply(
|
235 |
+
lambda row: teamname_loss_stats[stat].get(row['teamname'], 0),
|
236 |
+
axis=1
|
237 |
+
)
|
238 |
+
|
239 |
+
tables['overall_win_kills_boost'] = tables['Opponent_avg_kills_allowed_win'] / tables['league_avg_kills_win']
|
240 |
+
tables['overall_win_deaths_boost'] = tables['Opponent_avg_deaths_allowed_win'] / tables['league_avg_deaths_win']
|
241 |
+
tables['overall_win_assists_boost'] = tables['Opponent_avg_assists_allowed_win'] / tables['league_avg_assists_win']
|
242 |
+
tables['overall_win_total_cs_boost'] = tables['Opponent_avg_total_cs_allowed_win'] / tables['league_avg_total_cs_win']
|
243 |
+
tables['overall_loss_kills_boost'] = tables['Opponent_avg_kills_allowed_loss'] / tables['league_avg_kills_loss']
|
244 |
+
tables['overall_loss_deaths_boost'] = tables['Opponent_avg_deaths_allowed_loss'] / tables['league_avg_deaths_loss']
|
245 |
+
tables['overall_loss_assists_boost'] = tables['Opponent_avg_assists_allowed_loss'] / tables['league_avg_assists_loss']
|
246 |
+
tables['overall_loss_total_cs_boost'] = tables['Opponent_avg_total_cs_allowed_loss'] / tables['league_avg_total_cs_loss']
|
247 |
+
|
248 |
+
tables['overall_win_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_win'] / tables['league_pos_avg_kills_win']
|
249 |
+
tables['overall_win_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_win'] / tables['league_pos_avg_deaths_win']
|
250 |
+
tables['overall_win_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_win'] / tables['league_pos_avg_assists_win']
|
251 |
+
tables['overall_win_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_win'] / tables['league_pos_avg_total_cs_win']
|
252 |
+
tables['overall_loss_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_loss'] / tables['league_pos_avg_kills_loss']
|
253 |
+
tables['overall_loss_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_loss'] / tables['league_pos_avg_deaths_loss']
|
254 |
+
tables['overall_loss_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_loss'] / tables['league_pos_avg_assists_loss']
|
255 |
+
tables['overall_loss_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_loss'] / tables['league_pos_avg_total_cs_loss']
|
256 |
+
|
257 |
+
tables['playername_avg_kill_share_win'] = tables['playername_avg_kills_win'] / tables['teamname_avg_kills_win']
|
258 |
+
tables['playername_avg_death_share_win'] = tables['playername_avg_deaths_win'] / tables['teamname_avg_deaths_win']
|
259 |
+
tables['playername_avg_assist_share_win'] = tables['playername_avg_assists_win'] / tables['teamname_avg_kills_win']
|
260 |
+
tables['playername_avg_cs_share_win'] = tables['playername_avg_total_cs_win'] / tables['teamname_avg_total_cs_win']
|
261 |
+
tables['playername_avg_kill_share_loss'] = tables['playername_avg_kills_loss'] / tables['teamname_avg_kills_loss']
|
262 |
+
tables['playername_avg_death_share_loss'] = tables['playername_avg_deaths_loss'] / tables['teamname_avg_deaths_loss']
|
263 |
+
tables['playername_avg_assist_share_loss'] = tables['playername_avg_assists_loss'] / tables['teamname_avg_kills_loss']
|
264 |
+
tables['playername_avg_cs_share_loss'] = tables['playername_avg_total_cs_loss'] / tables['teamname_avg_total_cs_loss']
|
265 |
+
|
266 |
+
if tables == raw_display:
|
267 |
+
player_tables = tables
|
268 |
+
else:
|
269 |
+
opp_tables = tables
|
270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
if kill_prediction > 0:
|
272 |
+
player_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kill_share_win', 'playername_avg_death_share_win','playername_avg_assist_share_win',
|
273 |
'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
|
274 |
+
player_tables = player_tables.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%',
|
275 |
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%',
|
276 |
'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
|
277 |
+
team_data = player_tables.drop_duplicates(subset = ['playername'])
|
278 |
|
279 |
if win_loss == "Win":
|
280 |
team_data['Kill_Proj'] = team_data['wKill%'] * kill_prediction
|
281 |
team_data['Death_Proj'] = team_data['wDeath%'] * death_prediction
|
282 |
team_data['Assist_Proj'] = team_data['wAssist%'] * kill_prediction
|
283 |
+
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'wCS']]
|
284 |
else:
|
285 |
team_data['Kill_Proj'] = team_data['lKill%'] * kill_prediction
|
286 |
team_data['Death_Proj'] = team_data['lDeath%'] * death_prediction
|
287 |
team_data['Assist_Proj'] = team_data['lAssist%'] * kill_prediction
|
288 |
+
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'lCS']]
|
289 |
else:
|
290 |
+
player_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kills_win', 'playername_avg_deaths_win', 'playername_avg_assists_win', 'playername_avg_total_cs_win',
|
291 |
'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']]
|
292 |
+
player_tables = player_tables.rename(columns = {'playername_avg_kills_win': 'wKill%', 'playername_avg_deaths_win': 'wDeath%', 'playername_avg_assists_win': 'wAssist%',
|
293 |
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%',
|
294 |
'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
|
295 |
+
team_data = player_tables.drop_duplicates(subset = ['playername'])
|
296 |
|
297 |
if win_loss == "Win":
|
298 |
team_data['Kill_Proj'] = team_data['wKill%']
|
299 |
team_data['Death_Proj'] = team_data['wDeath%']
|
300 |
team_data['Assist_Proj'] = team_data['wAssist%']
|
301 |
+
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'wCS']]
|
302 |
else:
|
303 |
team_data['Kill_Proj'] = team_data['lKill%']
|
304 |
team_data['Death_Proj'] = team_data['lDeath%']
|
305 |
team_data['Assist_Proj'] = team_data['lAssist%']
|
306 |
+
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'lCS']]
|
307 |
|
308 |
return team_data.dropna().reset_index(drop=True)
|
309 |
|
310 |
if st.button("Run"):
|
311 |
+
st.dataframe(init_team_data(selected_team, selected_opponent, win_loss, kill_prediction, death_prediction, start_date, end_date).style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)
|