Spaces:
Running
Running
James McCool
commited on
Commit
·
9e23c76
1
Parent(s):
b966d2c
Refactor player data handling in init_team_data function of app.py. Changed variable name from 'player_tables' to 'working_tables' for clarity, and updated the assignment of player statistics to improve readability. Enhanced the 'playername' formatting to include a space before the game iteration number, ensuring better presentation of player data during simulations.
Browse files
app.py
CHANGED
@@ -301,12 +301,12 @@ def init_team_data(team, opponent, win_loss_settings, kill_predictions, death_pr
|
|
301 |
|
302 |
for game in range(game_count):
|
303 |
if kill_predictions[game] > 0:
|
304 |
-
|
305 |
'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
|
306 |
-
|
307 |
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%',
|
308 |
'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
|
309 |
-
team_data =
|
310 |
|
311 |
if win_loss_settings[game] == "Win":
|
312 |
team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1) * kill_predictions[game]
|
@@ -321,12 +321,12 @@ def init_team_data(team, opponent, win_loss_settings, kill_predictions, death_pr
|
|
321 |
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
|
322 |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
|
323 |
else:
|
324 |
-
|
325 |
'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']]
|
326 |
-
|
327 |
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%',
|
328 |
'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
|
329 |
-
team_data =
|
330 |
|
331 |
if win_loss_settings[game] == "Win":
|
332 |
team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1)
|
@@ -340,7 +340,7 @@ def init_team_data(team, opponent, win_loss_settings, kill_predictions, death_pr
|
|
340 |
team_data['Assist_Proj'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1)
|
341 |
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
|
342 |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
|
343 |
-
team_data['playername'] = team_data['playername'] + f'game {game + 1}'
|
344 |
|
345 |
overall_team_data = pd.concat([overall_team_data, team_data])
|
346 |
|
|
|
301 |
|
302 |
for game in range(game_count):
|
303 |
if kill_predictions[game] > 0:
|
304 |
+
working_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kill_share_win', 'playername_avg_death_share_win','playername_avg_assist_share_win',
|
305 |
'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
|
306 |
+
working_tables = working_tables.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%',
|
307 |
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%',
|
308 |
'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
|
309 |
+
team_data = working_tables.drop_duplicates(subset = ['playername'])
|
310 |
|
311 |
if win_loss_settings[game] == "Win":
|
312 |
team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1) * kill_predictions[game]
|
|
|
321 |
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
|
322 |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
|
323 |
else:
|
324 |
+
working_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kills_win', 'playername_avg_deaths_win', 'playername_avg_assists_win', 'playername_avg_total_cs_win',
|
325 |
'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']]
|
326 |
+
working_tables = working_tables.rename(columns = {'playername_avg_kills_win': 'wKill%', 'playername_avg_deaths_win': 'wDeath%', 'playername_avg_assists_win': 'wAssist%',
|
327 |
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%',
|
328 |
'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
|
329 |
+
team_data = working_tables.drop_duplicates(subset = ['playername'])
|
330 |
|
331 |
if win_loss_settings[game] == "Win":
|
332 |
team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1)
|
|
|
340 |
team_data['Assist_Proj'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1)
|
341 |
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
|
342 |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
|
343 |
+
team_data['playername'] = team_data['playername'] + f' game {game + 1}'
|
344 |
|
345 |
overall_team_data = pd.concat([overall_team_data, team_data])
|
346 |
|