Spaces:
Running
Running
James McCool
commited on
Commit
·
a769f8a
1
Parent(s):
a88c238
Add advanced statistical calculations to init_team_data in app.py. Implemented new metrics for league, opponent, player, and team performance, including averages and boost calculations for kills, deaths, assists, and total CS. This enhancement improves the depth of analysis available for team performance evaluation.
Browse files
app.py
CHANGED
@@ -94,6 +94,151 @@ def init_team_data(team, win_loss, kill_prediction, death_prediction, start_date
|
|
94 |
cursor = collection.find({"teamname": team, "date": {"$gte": start_datetime, "$lte": end_datetime}})
|
95 |
|
96 |
raw_display = pd.DataFrame(list(cursor))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
raw_display = raw_display[['playername', 'teamname', 'playername_avg_kill_share_win', 'playername_avg_death_share_win', 'playername_avg_assist_share_win', 'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
|
98 |
raw_display = raw_display.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%', 'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%', 'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
|
99 |
team_data = raw_display.drop_duplicates(subset = ['playername'])
|
|
|
94 |
cursor = collection.find({"teamname": team, "date": {"$gte": start_datetime, "$lte": end_datetime}})
|
95 |
|
96 |
raw_display = pd.DataFrame(list(cursor))
|
97 |
+
calc_columns = ['kills', 'deaths', 'assists', 'total_cs']
|
98 |
+
league_win_stats = {}
|
99 |
+
league_loss_stats = {}
|
100 |
+
league_pos_win_stats = {}
|
101 |
+
league_pos_loss_stats = {}
|
102 |
+
Opponent_win_allowed_stats = {}
|
103 |
+
Opponent_loss_allowed_stats = {}
|
104 |
+
Opponent_pos_win_allowed_stats = {}
|
105 |
+
Opponent_pos_loss_allowed_stats = {}
|
106 |
+
playername_win_stats = {}
|
107 |
+
playername_loss_stats = {}
|
108 |
+
teamname_win_stats = {}
|
109 |
+
teamname_loss_stats = {}
|
110 |
+
|
111 |
+
for stats in calc_columns:
|
112 |
+
league_win_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] != 'team')].groupby('league')[stats].mean().to_dict()
|
113 |
+
league_loss_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] != 'team')].groupby('league')[stats].mean().to_dict()
|
114 |
+
Opponent_win_allowed_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] != 'team')].groupby('Opponent')[stats].mean().to_dict()
|
115 |
+
Opponent_loss_allowed_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] != 'team')].groupby('Opponent')[stats].mean().to_dict()
|
116 |
+
|
117 |
+
for stats in calc_columns:
|
118 |
+
league_pos_win_stats[stats] = {
|
119 |
+
league: group.groupby('position')[stats].mean().to_dict()
|
120 |
+
for league, group in raw_display[raw_display['result'] == 1].groupby('league')
|
121 |
+
}
|
122 |
+
league_pos_loss_stats[stats] = {
|
123 |
+
league: group.groupby('position')[stats].mean().to_dict()
|
124 |
+
for league, group in raw_display[raw_display['result'] == 0].groupby('league')
|
125 |
+
}
|
126 |
+
|
127 |
+
Opponent_pos_win_allowed_stats[stats] = {
|
128 |
+
opponent: group.groupby('position')[stats].mean().to_dict()
|
129 |
+
for opponent, group in raw_display[raw_display['result'] == 1].groupby('Opponent')
|
130 |
+
}
|
131 |
+
Opponent_pos_loss_allowed_stats[stats] = {
|
132 |
+
opponent: group.groupby('position')[stats].mean().to_dict()
|
133 |
+
for opponent, group in raw_display[raw_display['result'] == 0].groupby('Opponent')
|
134 |
+
}
|
135 |
+
|
136 |
+
for stats in calc_columns:
|
137 |
+
playername_win_stats[stats] = raw_display[raw_display['result'] == 1].groupby(['playername'])[stats].mean().to_dict()
|
138 |
+
playername_loss_stats[stats] = raw_display[raw_display['result'] == 0].groupby(['playername'])[stats].mean().to_dict()
|
139 |
+
teamname_win_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
|
140 |
+
teamname_loss_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
|
141 |
+
|
142 |
+
for stat in calc_columns:
|
143 |
+
|
144 |
+
column_name = f'league_avg_{stat}_win'
|
145 |
+
raw_display[column_name] = raw_display.apply(
|
146 |
+
lambda row: league_win_stats[stat].get(row['league'], 0),
|
147 |
+
axis=1
|
148 |
+
)
|
149 |
+
|
150 |
+
column_name = f'league_avg_{stat}_loss'
|
151 |
+
raw_display[column_name] = raw_display.apply(
|
152 |
+
lambda row: league_loss_stats[stat].get(row['league'], 0),
|
153 |
+
axis=1
|
154 |
+
)
|
155 |
+
|
156 |
+
column_name = f'Opponent_avg_{stat}_allowed_win'
|
157 |
+
raw_display[column_name] = raw_display.apply(
|
158 |
+
lambda row: Opponent_win_allowed_stats[stat].get(row['Opponent'], 0),
|
159 |
+
axis=1
|
160 |
+
)
|
161 |
+
|
162 |
+
column_name = f'Opponent_avg_{stat}_allowed_loss'
|
163 |
+
raw_display[column_name] = raw_display.apply(
|
164 |
+
lambda row: Opponent_loss_allowed_stats[stat].get(row['Opponent'], 0),
|
165 |
+
axis=1
|
166 |
+
)
|
167 |
+
|
168 |
+
column_name = f'league_pos_avg_{stat}_win'
|
169 |
+
raw_display[column_name] = raw_display.apply(
|
170 |
+
lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0),
|
171 |
+
axis=1
|
172 |
+
)
|
173 |
+
|
174 |
+
column_name = f'league_pos_avg_{stat}_loss'
|
175 |
+
raw_display[column_name] = raw_display.apply(
|
176 |
+
lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0),
|
177 |
+
axis=1
|
178 |
+
)
|
179 |
+
|
180 |
+
column_name = f'Opponent_pos_avg_{stat}_allowed_win'
|
181 |
+
raw_display[column_name] = raw_display.apply(
|
182 |
+
lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
|
183 |
+
axis=1
|
184 |
+
)
|
185 |
+
|
186 |
+
column_name = f'Opponent_pos_avg_{stat}_allowed_loss'
|
187 |
+
raw_display[column_name] = raw_display.apply(
|
188 |
+
lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
|
189 |
+
axis=1
|
190 |
+
)
|
191 |
+
|
192 |
+
column_name = f'playername_avg_{stat}_win'
|
193 |
+
raw_display[column_name] = raw_display.apply(
|
194 |
+
lambda row: playername_win_stats[stat].get(row['playername'], 0),
|
195 |
+
axis=1
|
196 |
+
)
|
197 |
+
|
198 |
+
column_name = f'playername_avg_{stat}_loss'
|
199 |
+
raw_display[column_name] = raw_display.apply(
|
200 |
+
lambda row: playername_loss_stats[stat].get(row['playername'], 0),
|
201 |
+
axis=1
|
202 |
+
)
|
203 |
+
|
204 |
+
column_name = f'teamname_avg_{stat}_win'
|
205 |
+
raw_display[column_name] = raw_display.apply(
|
206 |
+
lambda row: teamname_win_stats[stat].get(row['teamname'], 0),
|
207 |
+
axis=1
|
208 |
+
)
|
209 |
+
|
210 |
+
column_name = f'teamname_avg_{stat}_loss'
|
211 |
+
raw_display[column_name] = raw_display.apply(
|
212 |
+
lambda row: teamname_loss_stats[stat].get(row['teamname'], 0),
|
213 |
+
axis=1
|
214 |
+
)
|
215 |
+
|
216 |
+
raw_display['overall_win_kills_boost'] = raw_display['Opponent_avg_kills_allowed_win'] / raw_display['league_avg_kills_win']
|
217 |
+
raw_display['overall_win_deaths_boost'] = raw_display['Opponent_avg_deaths_allowed_win'] / raw_display['league_avg_deaths_win']
|
218 |
+
raw_display['overall_win_assists_boost'] = raw_display['Opponent_avg_assists_allowed_win'] / raw_display['league_avg_assists_win']
|
219 |
+
raw_display['overall_win_total_cs_boost'] = raw_display['Opponent_avg_total_cs_allowed_win'] / raw_display['league_avg_total_cs_win']
|
220 |
+
raw_display['overall_loss_kills_boost'] = raw_display['Opponent_avg_kills_allowed_loss'] / raw_display['league_avg_kills_loss']
|
221 |
+
raw_display['overall_loss_deaths_boost'] = raw_display['Opponent_avg_deaths_allowed_loss'] / raw_display['league_avg_deaths_loss']
|
222 |
+
raw_display['overall_loss_assists_boost'] = raw_display['Opponent_avg_assists_allowed_loss'] / raw_display['league_avg_assists_loss']
|
223 |
+
raw_display['overall_loss_total_cs_boost'] = raw_display['Opponent_avg_total_cs_allowed_loss'] / raw_display['league_avg_total_cs_loss']
|
224 |
+
|
225 |
+
raw_display['overall_win_kills_boost_pos'] = raw_display['Opponent_pos_avg_kills_allowed_win'] / raw_display['league_pos_avg_kills_win']
|
226 |
+
raw_display['overall_win_deaths_boost_pos'] = raw_display['Opponent_pos_avg_deaths_allowed_win'] / raw_display['league_pos_avg_deaths_win']
|
227 |
+
raw_display['overall_win_assists_boost_pos'] = raw_display['Opponent_pos_avg_assists_allowed_win'] / raw_display['league_pos_avg_assists_win']
|
228 |
+
raw_display['overall_win_total_cs_boost_pos'] = raw_display['Opponent_pos_avg_total_cs_allowed_win'] / raw_display['league_pos_avg_total_cs_win']
|
229 |
+
raw_display['overall_loss_kills_boost_pos'] = raw_display['Opponent_pos_avg_kills_allowed_loss'] / raw_display['league_pos_avg_kills_loss']
|
230 |
+
raw_display['overall_loss_deaths_boost_pos'] = raw_display['Opponent_pos_avg_deaths_allowed_loss'] / raw_display['league_pos_avg_deaths_loss']
|
231 |
+
raw_display['overall_loss_assists_boost_pos'] = raw_display['Opponent_pos_avg_assists_allowed_loss'] / raw_display['league_pos_avg_assists_loss']
|
232 |
+
raw_display['overall_loss_total_cs_boost_pos'] = raw_display['Opponent_pos_avg_total_cs_allowed_loss'] / raw_display['league_pos_avg_total_cs_loss']
|
233 |
+
|
234 |
+
raw_display['playername_avg_kill_share_win'] = raw_display['playername_avg_kills_win'] / raw_display['teamname_avg_kills_win']
|
235 |
+
raw_display['playername_avg_death_share_win'] = raw_display['playername_avg_deaths_win'] / raw_display['teamname_avg_deaths_win']
|
236 |
+
raw_display['playername_avg_assist_share_win'] = raw_display['playername_avg_assists_win'] / raw_display['teamname_avg_kills_win']
|
237 |
+
raw_display['playername_avg_cs_share_win'] = raw_display['playername_avg_total_cs_win'] / raw_display['teamname_avg_total_cs_win']
|
238 |
+
raw_display['playername_avg_kill_share_loss'] = raw_display['playername_avg_kills_loss'] / raw_display['teamname_avg_kills_loss']
|
239 |
+
raw_display['playername_avg_death_share_loss'] = raw_display['playername_avg_deaths_loss'] / raw_display['teamname_avg_deaths_loss']
|
240 |
+
raw_display['playername_avg_assist_share_loss'] = raw_display['playername_avg_assists_loss'] / raw_display['teamname_avg_kills_loss']
|
241 |
+
raw_display['playername_avg_cs_share_loss'] = raw_display['playername_avg_total_cs_loss'] / raw_display['teamname_avg_total_cs_loss']
|
242 |
raw_display = raw_display[['playername', 'teamname', 'playername_avg_kill_share_win', 'playername_avg_death_share_win', 'playername_avg_assist_share_win', 'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
|
243 |
raw_display = raw_display.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%', 'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%', 'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
|
244 |
team_data = raw_display.drop_duplicates(subset = ['playername'])
|