James McCool commited on
Commit
dc7066d
·
1 Parent(s): d2f16b0

Refactor app.py to enhance data presentation and organization. Introduced a new tabbed layout with three tabs: "Overall Data", "Individual Game Data", and "Opponent Data". Improved the display of overall simulations by adding subheaders and individual player tabs for better clarity. Updated the styling for dataframes to maintain a consistent visual theme using the 'RdYlGn' colormap. These changes enhance user experience and readability of simulation results.

Browse files
Files changed (1) hide show
  1. app.py +31 -28
app.py CHANGED
@@ -427,37 +427,40 @@ if st.button("Run"):
427
  overall_sim_df = pd.DataFrame(overall_sim_results)
428
  overall_sim_df = overall_sim_df.drop_duplicates(subset = ['Player', 'Stat'])
429
 
430
- tab1, tab2 = st.tabs(["Team Data", "Opponent Data"])
431
  with tab1:
432
  st.subheader("Full Match Data")
433
  st.dataframe(player_summary.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434
  st.subheader("Individual Game Data")
435
  st.dataframe(team_data.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)
436
- with tab2:
437
- st.dataframe(opp_boost.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
438
 
439
- st.subheader("Individual Game Simulations")
440
- unique_players = sim_df['Player'].unique().tolist()
441
- player_tabs = st.tabs(unique_players)
442
-
443
- for player, tab in zip(unique_players, player_tabs):
444
- with tab:
445
- player_data = sim_df[sim_df['Player'] == player]
446
- player_data = player_data.set_index('Stat')
447
- st.dataframe(
448
- player_data[['10%', '25%', '50%', '75%', '90%']]
449
- .style.format(precision=2),
450
- use_container_width=True
451
- )
452
-
453
- st.subheader("Overall Simulations")
454
- stat_tabs = st.tabs(["Kills", "Deaths", "Assists", "CS"])
455
-
456
- for stat, tab in zip(["Kills", "Deaths", "Assists", "CS"], stat_tabs):
457
- with tab:
458
- stat_data = overall_sim_df[overall_sim_df['Stat'] == stat].copy()
459
- stat_data = stat_data.set_index('Player')[['Position', '10%', '25%', '50%', '75%', '90%']]
460
- st.dataframe(
461
- stat_data.style.format(precision=2).background_gradient(axis=0).background_gradient(cmap='RdYlGn'),
462
- use_container_width=True
463
- )
 
427
  overall_sim_df = pd.DataFrame(overall_sim_results)
428
  overall_sim_df = overall_sim_df.drop_duplicates(subset = ['Player', 'Stat'])
429
 
430
+ tab1, tab2, tab3 = st.tabs(["Overall Data", "Individual Game Data", "Opponent Data"])
431
  with tab1:
432
  st.subheader("Full Match Data")
433
  st.dataframe(player_summary.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)
434
+
435
+ st.subheader("Overall Simulations")
436
+ stat_tabs = st.tabs(["Kills", "Deaths", "Assists", "CS"])
437
+
438
+ for stat, tab in zip(["Kills", "Deaths", "Assists", "CS"], stat_tabs):
439
+ with tab:
440
+ stat_data = overall_sim_df[overall_sim_df['Stat'] == stat].copy()
441
+ stat_data = stat_data.set_index('Player')[['Position', '10%', '25%', '50%', '75%', '90%']]
442
+ st.dataframe(
443
+ stat_data.style.format(precision=2).background_gradient(axis=0).background_gradient(cmap='RdYlGn'),
444
+ use_container_width=True
445
+ )
446
+
447
+ with tab2:
448
  st.subheader("Individual Game Data")
449
  st.dataframe(team_data.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)
 
 
450
 
451
+ st.subheader("Individual Game Simulations")
452
+ unique_players = sim_df['Player'].unique().tolist()
453
+ player_tabs = st.tabs(unique_players)
454
+
455
+ for player, tab in zip(unique_players, player_tabs):
456
+ with tab:
457
+ player_data = sim_df[sim_df['Player'] == player]
458
+ player_data = player_data.set_index('Stat')
459
+ st.dataframe(
460
+ player_data[['10%', '25%', '50%', '75%', '90%']]
461
+ .style.format(precision=2),
462
+ use_container_width=True
463
+ )
464
+
465
+ with tab3:
466
+ st.dataframe(opp_boost.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)