Spaces:
Running
Running
James McCool
commited on
Commit
·
f35299f
1
Parent(s):
9e8b179
Refactor overall_team_data structure in app.py by removing the 'Opponent' column and updating the 'playername' assignment to include game iteration. This change streamlines the data representation and enhances clarity in player statistics during simulations.
Browse files
app.py
CHANGED
@@ -151,7 +151,7 @@ def simulate_stats(row, num_sims=1000):
|
|
151 |
@st.cache_data(ttl = 60)
|
152 |
def init_team_data(team, opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date):
|
153 |
game_count = len(kill_predictions)
|
154 |
-
overall_team_data = pd.DataFrame(columns = ['playername', 'teamname', 'position', '
|
155 |
# Convert date objects to datetime strings in the correct format
|
156 |
start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
|
157 |
end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S")
|
@@ -300,7 +300,6 @@ def init_team_data(team, opponent, win_loss_settings, kill_predictions, death_pr
|
|
300 |
}).set_index(pd.Index(list(opp_pos_kills_boost_win.keys()), name='position'))
|
301 |
|
302 |
for game in range(game_count):
|
303 |
-
st.write(f'Game {game + 1}')
|
304 |
if kill_predictions[game] > 0:
|
305 |
player_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kill_share_win', 'playername_avg_death_share_win','playername_avg_assist_share_win',
|
306 |
'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
|
@@ -341,8 +340,7 @@ def init_team_data(team, opponent, win_loss_settings, kill_predictions, death_pr
|
|
341 |
team_data['Assist_Proj'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1)
|
342 |
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
|
343 |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
|
344 |
-
team_data['playername'] =
|
345 |
-
st.write(team_data)
|
346 |
|
347 |
overall_team_data = pd.concat([overall_team_data, team_data])
|
348 |
|
|
|
151 |
@st.cache_data(ttl = 60)
|
152 |
def init_team_data(team, opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date):
|
153 |
game_count = len(kill_predictions)
|
154 |
+
overall_team_data = pd.DataFrame(columns = ['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj'])
|
155 |
# Convert date objects to datetime strings in the correct format
|
156 |
start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
|
157 |
end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S")
|
|
|
300 |
}).set_index(pd.Index(list(opp_pos_kills_boost_win.keys()), name='position'))
|
301 |
|
302 |
for game in range(game_count):
|
|
|
303 |
if kill_predictions[game] > 0:
|
304 |
player_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kill_share_win', 'playername_avg_death_share_win','playername_avg_assist_share_win',
|
305 |
'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
|
|
|
340 |
team_data['Assist_Proj'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1)
|
341 |
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
|
342 |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
|
343 |
+
team_data['playername'] = team_data['playername'] + f'game {game + 1}'
|
|
|
344 |
|
345 |
overall_team_data = pd.concat([overall_team_data, team_data])
|
346 |
|