James McCool commited on
Commit
f35299f
·
1 Parent(s): 9e8b179

Refactor overall_team_data structure in app.py by removing the 'Opponent' column and updating the 'playername' assignment to include game iteration. This change streamlines the data representation and enhances clarity in player statistics during simulations.

Browse files
Files changed (1) hide show
  1. app.py +2 -4
app.py CHANGED
@@ -151,7 +151,7 @@ def simulate_stats(row, num_sims=1000):
151
  @st.cache_data(ttl = 60)
152
  def init_team_data(team, opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date):
153
  game_count = len(kill_predictions)
154
- overall_team_data = pd.DataFrame(columns = ['playername', 'teamname', 'position', 'league', 'Opponent', 'result', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj'])
155
  # Convert date objects to datetime strings in the correct format
156
  start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
157
  end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S")
@@ -300,7 +300,6 @@ def init_team_data(team, opponent, win_loss_settings, kill_predictions, death_pr
300
  }).set_index(pd.Index(list(opp_pos_kills_boost_win.keys()), name='position'))
301
 
302
  for game in range(game_count):
303
- st.write(f'Game {game + 1}')
304
  if kill_predictions[game] > 0:
305
  player_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kill_share_win', 'playername_avg_death_share_win','playername_avg_assist_share_win',
306
  'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
@@ -341,8 +340,7 @@ def init_team_data(team, opponent, win_loss_settings, kill_predictions, death_pr
341
  team_data['Assist_Proj'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1)
342
  team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
343
  team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
344
- team_data['playername'] = f'playername {game + 1}'
345
- st.write(team_data)
346
 
347
  overall_team_data = pd.concat([overall_team_data, team_data])
348
 
 
151
  @st.cache_data(ttl = 60)
152
  def init_team_data(team, opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date):
153
  game_count = len(kill_predictions)
154
+ overall_team_data = pd.DataFrame(columns = ['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj'])
155
  # Convert date objects to datetime strings in the correct format
156
  start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
157
  end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S")
 
300
  }).set_index(pd.Index(list(opp_pos_kills_boost_win.keys()), name='position'))
301
 
302
  for game in range(game_count):
 
303
  if kill_predictions[game] > 0:
304
  player_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kill_share_win', 'playername_avg_death_share_win','playername_avg_assist_share_win',
305
  'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
 
340
  team_data['Assist_Proj'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1)
341
  team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
342
  team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
343
+ team_data['playername'] = team_data['playername'] + f'game {game + 1}'
 
344
 
345
  overall_team_data = pd.concat([overall_team_data, team_data])
346