Spaces:
Running
Running
James McCool
commited on
Commit
·
fac7ac1
1
Parent(s):
eeb63f1
Enhance date filtering options in team analysis. Added functionality to select date ranges for data analysis, including a "Last Year" option and a custom date range input. Updated init_team_data function to filter game logs based on selected dates, improving data relevance for analysis.
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import numpy as np
|
|
4 |
import pandas as pd
|
5 |
import pymongo
|
6 |
import time
|
|
|
7 |
|
8 |
@st.cache_resource
|
9 |
def init_conn():
|
@@ -13,18 +14,48 @@ def init_conn():
|
|
13 |
db = client["League_of_Legends_Database"]
|
14 |
|
15 |
collection = db["gamelogs"]
|
|
|
|
|
16 |
team_names = collection.distinct("teamname")
|
17 |
player_names = collection.distinct("playername")
|
18 |
|
19 |
-
return db, team_names, player_names
|
20 |
|
21 |
-
db, team_names, player_names = init_conn()
|
22 |
|
23 |
display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}'}
|
24 |
|
25 |
# Create sidebar container for options
|
26 |
with st.sidebar:
|
27 |
st.header("Team Analysis Options")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
selected_team = st.selectbox(
|
29 |
"Select Team",
|
30 |
options=team_names,
|
@@ -53,10 +84,10 @@ with st.sidebar:
|
|
53 |
)
|
54 |
|
55 |
@st.cache_data(ttl = 60)
|
56 |
-
def init_team_data(team, win_loss, kill_prediction, death_prediction):
|
57 |
|
58 |
collection = db["gamelogs"]
|
59 |
-
cursor = collection.find({"teamname": team})
|
60 |
|
61 |
raw_display = pd.DataFrame(list(cursor))
|
62 |
raw_display = raw_display[['playername', 'teamname', 'playername_avg_kill_share_win', 'playername_avg_death_share_win', 'playername_avg_assist_share_win', 'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
|
@@ -77,4 +108,4 @@ def init_team_data(team, win_loss, kill_prediction, death_prediction):
|
|
77 |
return team_data.dropna().reset_index(drop=True)
|
78 |
|
79 |
if st.button("Run"):
|
80 |
-
st.dataframe(init_team_data(selected_team, win_loss, kill_prediction, death_prediction).style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)
|
|
|
4 |
import pandas as pd
|
5 |
import pymongo
|
6 |
import time
|
7 |
+
from datetime import datetime, timedelta
|
8 |
|
9 |
@st.cache_resource
|
10 |
def init_conn():
|
|
|
14 |
db = client["League_of_Legends_Database"]
|
15 |
|
16 |
collection = db["gamelogs"]
|
17 |
+
min_date = collection.find_one({}, sort=[("date", 1)])["date"]
|
18 |
+
max_date = collection.find_one({}, sort=[("date", -1)])["date"]
|
19 |
team_names = collection.distinct("teamname")
|
20 |
player_names = collection.distinct("playername")
|
21 |
|
22 |
+
return db, team_names, player_names, min_date, max_date
|
23 |
|
24 |
+
db, team_names, player_names, min_date, max_date = init_conn()
|
25 |
|
26 |
display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}'}
|
27 |
|
28 |
# Create sidebar container for options
|
29 |
with st.sidebar:
|
30 |
st.header("Team Analysis Options")
|
31 |
+
|
32 |
+
# Date filtering options
|
33 |
+
st.subheader("Date Range")
|
34 |
+
date_filter = st.radio(
|
35 |
+
"Select Date Range",
|
36 |
+
["Last Year", "Custom Range"]
|
37 |
+
)
|
38 |
+
|
39 |
+
if date_filter == "Last Year":
|
40 |
+
end_date = max_date
|
41 |
+
start_date = end_date - timedelta(days=365)
|
42 |
+
else:
|
43 |
+
col1, col2 = st.columns(2)
|
44 |
+
with col1:
|
45 |
+
start_date = st.date_input(
|
46 |
+
"Start Date",
|
47 |
+
value=max_date - timedelta(days=365),
|
48 |
+
min_value=min_date,
|
49 |
+
max_value=max_date
|
50 |
+
)
|
51 |
+
with col2:
|
52 |
+
end_date = st.date_input(
|
53 |
+
"End Date",
|
54 |
+
value=max_date,
|
55 |
+
min_value=min_date,
|
56 |
+
max_value=max_date
|
57 |
+
)
|
58 |
+
|
59 |
selected_team = st.selectbox(
|
60 |
"Select Team",
|
61 |
options=team_names,
|
|
|
84 |
)
|
85 |
|
86 |
@st.cache_data(ttl = 60)
|
87 |
+
def init_team_data(team, win_loss, kill_prediction, death_prediction, start_date, end_date):
|
88 |
|
89 |
collection = db["gamelogs"]
|
90 |
+
cursor = collection.find({"teamname": team, "date": {"$gte": start_date, "$lte": end_date}})
|
91 |
|
92 |
raw_display = pd.DataFrame(list(cursor))
|
93 |
raw_display = raw_display[['playername', 'teamname', 'playername_avg_kill_share_win', 'playername_avg_death_share_win', 'playername_avg_assist_share_win', 'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
|
|
|
108 |
return team_data.dropna().reset_index(drop=True)
|
109 |
|
110 |
if st.button("Run"):
|
111 |
+
st.dataframe(init_team_data(selected_team, win_loss, kill_prediction, death_prediction, start_date, end_date).style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)
|