import streamlit as st st.set_page_config(layout="wide") import numpy as np import pandas as pd import pymongo import time from datetime import datetime, timedelta from scipy import stats @st.cache_resource def init_conn(): uri = st.secrets['mongo_uri'] client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) db = client["League_of_Legends_Database"] current_date = datetime.now() collection = db["gamelogs"] max_date = current_date - timedelta(days=1) min_date = current_date - timedelta(days=365) team_names = collection.distinct("teamname") player_names = collection.distinct("playername") return db, team_names, player_names, min_date, max_date db, team_names, player_names, min_date, max_date = init_conn() display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}'} # Create sidebar container for options with st.sidebar: st.header("Team Analysis Options") # Date filtering options st.subheader("Date Range") date_filter = st.radio( "Select Date Range", ["Last Year", "Custom Range"] ) if date_filter == "Last Year": end_date = max_date start_date = (end_date - timedelta(days=365)) else: col1, col2 = st.columns(2) with col1: start_date = st.date_input( "Start Date", value=max_date.date() - timedelta(days=30), min_value=min_date.date(), max_value=max_date.date() ) with col2: end_date = st.date_input( "End Date", value=max_date.date(), min_value=min_date.date(), max_value=max_date.date() ) selected_team = st.selectbox( "Select Team", options=team_names, index=team_names.index("T1") if "T1" in team_names else 0 ) selected_opponent = st.selectbox( "Select Opponent", options=team_names, index=team_names.index("T1") if "T1" in team_names else 0 ) st.subheader("Prediction Settings") win_loss = st.selectbox( "Select Win/Loss", options=["Win", "Loss"], index=0 ) game_settings = st.selectbox( "Predict kills/deaths or use average?", options=["Average", "Predict"], index=0 ) if game_settings == "Average": kill_prediction = 0 death_prediction = 0 else: kill_prediction = st.number_input( "Predicted Team Kills", min_value=1, max_value=100, value=20 ) death_prediction = st.number_input( "Predicted Team Deaths", min_value=1, max_value=100, value=5 ) @st.cache_data(ttl = 60) def simulate_stats(row, num_sims=1000): """Simulate stats using normal distribution""" # Using coefficient of variation of 0.3 to generate reasonable standard deviations cv = 0.3 percentiles = [10, 25, 50, 75, 90] results = {} for stat in ['Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']: mean = row[stat] std = mean * cv # Using coefficient of variation to determine std sims = stats.norm.rvs(loc=mean, scale=std, size=num_sims) # Ensure no negative values sims = np.maximum(sims, 0) results[stat] = np.percentile(sims, percentiles) return pd.Series(results) @st.cache_data(ttl = 60) def init_team_data(team, opponent, win_loss, kill_prediction, death_prediction, start_date, end_date): # Convert date objects to datetime strings in the correct format start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S") end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S") collection = db["gamelogs"] cursor = collection.find({"teamname": team, "date": {"$gte": start_datetime, "$lte": end_datetime}}) raw_display = pd.DataFrame(list(cursor)) cursor = collection.find({"date": {"$gte": start_datetime, "$lte": end_datetime}}) raw_opponent = pd.DataFrame(list(cursor)) tables_to_loop = [raw_display, raw_opponent] for loop in range(len(tables_to_loop)): tables = tables_to_loop[loop] calc_columns = ['kills', 'deaths', 'assists', 'total_cs'] league_pos_win_stats = {} league_pos_loss_stats = {} Opponent_pos_win_allowed_stats = {} Opponent_pos_loss_allowed_stats = {} playername_win_stats = {} playername_loss_stats = {} teamname_win_stats = {} teamname_loss_stats = {} if loop == 0: for stats in calc_columns: playername_win_stats[stats] = tables[tables['result'] == 1].groupby(['playername'])[stats].mean().to_dict() playername_loss_stats[stats] = tables[tables['result'] == 0].groupby(['playername'])[stats].mean().to_dict() teamname_win_stats[stats] = tables[(tables['result'] == 1) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict() teamname_loss_stats[stats] = tables[(tables['result'] == 0) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict() for stat in calc_columns: column_name = f'playername_avg_{stat}_win' tables[column_name] = tables.apply( lambda row: playername_win_stats[stat].get(row['playername'], 0), axis=1 ) column_name = f'playername_avg_{stat}_loss' tables[column_name] = tables.apply( lambda row: playername_loss_stats[stat].get(row['playername'], 0), axis=1 ) column_name = f'teamname_avg_{stat}_win' tables[column_name] = tables.apply( lambda row: teamname_win_stats[stat].get(row['teamname'], 0), axis=1 ) column_name = f'teamname_avg_{stat}_loss' tables[column_name] = tables.apply( lambda row: teamname_loss_stats[stat].get(row['teamname'], 0), axis=1 ) tables['playername_avg_kill_share_win'] = tables['playername_avg_kills_win'] / tables['teamname_avg_kills_win'] tables['playername_avg_death_share_win'] = tables['playername_avg_deaths_win'] / tables['teamname_avg_deaths_win'] tables['playername_avg_assist_share_win'] = tables['playername_avg_assists_win'] / tables['teamname_avg_kills_win'] tables['playername_avg_cs_share_win'] = tables['playername_avg_total_cs_win'] / tables['teamname_avg_total_cs_win'] tables['playername_avg_kill_share_loss'] = tables['playername_avg_kills_loss'] / tables['teamname_avg_kills_loss'] tables['playername_avg_death_share_loss'] = tables['playername_avg_deaths_loss'] / tables['teamname_avg_deaths_loss'] tables['playername_avg_assist_share_loss'] = tables['playername_avg_assists_loss'] / tables['teamname_avg_kills_loss'] tables['playername_avg_cs_share_loss'] = tables['playername_avg_total_cs_loss'] / tables['teamname_avg_total_cs_loss'] player_tables = tables else: for stats in calc_columns: league_pos_win_stats[stats] = { league: group.groupby('position')[stats].mean().to_dict() for league, group in tables[tables['result'] == 1].groupby('league') } league_pos_loss_stats[stats] = { league: group.groupby('position')[stats].mean().to_dict() for league, group in tables[tables['result'] == 0].groupby('league') } Opponent_pos_win_allowed_stats[stats] = { opponent: group.groupby('position')[stats].mean().to_dict() for opponent, group in tables[tables['result'] == 1].groupby('Opponent') } Opponent_pos_loss_allowed_stats[stats] = { opponent: group.groupby('position')[stats].mean().to_dict() for opponent, group in tables[tables['result'] == 0].groupby('Opponent') } for stat in calc_columns: column_name = f'league_pos_avg_{stat}_win' tables[column_name] = tables.apply( lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0), axis=1 ) column_name = f'league_pos_avg_{stat}_loss' tables[column_name] = tables.apply( lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0), axis=1 ) column_name = f'Opponent_pos_avg_{stat}_allowed_win' tables[column_name] = tables.apply( lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0), axis=1 ) column_name = f'Opponent_pos_avg_{stat}_allowed_loss' tables[column_name] = tables.apply( lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0), axis=1 ) tables = tables[tables['Opponent'] == opponent] tables['overall_win_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_win'] / tables['league_pos_avg_kills_win'] tables['overall_win_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_win'] / tables['league_pos_avg_deaths_win'] tables['overall_win_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_win'] / tables['league_pos_avg_assists_win'] tables['overall_win_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_win'] / tables['league_pos_avg_total_cs_win'] tables['overall_loss_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_loss'] / tables['league_pos_avg_kills_loss'] tables['overall_loss_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_loss'] / tables['league_pos_avg_deaths_loss'] tables['overall_loss_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_loss'] / tables['league_pos_avg_assists_loss'] tables['overall_loss_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_loss'] / tables['league_pos_avg_total_cs_loss'] opp_tables = tables opp_pos_kills_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_kills_boost_pos'])) opp_pos_deaths_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_deaths_boost_pos'])) opp_pos_assists_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_assists_boost_pos'])) opp_pos_cs_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_total_cs_boost_pos'])) opp_pos_kills_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_kills_boost_pos'])) opp_pos_deaths_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_deaths_boost_pos'])) opp_pos_assists_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_assists_boost_pos'])) opp_pos_cs_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_total_cs_boost_pos'])) opp_boosts = pd.DataFrame({ 'opp_pos_kills_boost_win': opp_pos_kills_boost_win, 'opp_pos_deaths_boost_win': opp_pos_deaths_boost_win, 'opp_pos_assists_boost_win': opp_pos_assists_boost_win, 'opp_pos_cs_boost_win': opp_pos_cs_boost_win, 'opp_pos_kills_boost_loss': opp_pos_kills_boost_loss, 'opp_pos_deaths_boost_loss': opp_pos_deaths_boost_loss, 'opp_pos_assists_boost_loss': opp_pos_assists_boost_loss, 'opp_pos_cs_boost_loss': opp_pos_cs_boost_loss }).set_index(pd.Index(list(opp_pos_kills_boost_win.keys()), name='position')) if kill_prediction > 0: player_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kill_share_win', 'playername_avg_death_share_win','playername_avg_assist_share_win', 'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']] player_tables = player_tables.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%', 'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%', 'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'}) team_data = player_tables.drop_duplicates(subset = ['playername']) if win_loss == "Win": team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1) team_data['Death_Proj'] = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1) team_data['Assist_Proj'] = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1) team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1) team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']] else: team_data['Kill_Proj'] = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1) team_data['Death_Proj'] = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1) team_data['Assist_Proj'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1) team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1) team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']] else: player_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kills_win', 'playername_avg_deaths_win', 'playername_avg_assists_win', 'playername_avg_total_cs_win', 'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']] player_tables = player_tables.rename(columns = {'playername_avg_kills_win': 'wKill%', 'playername_avg_deaths_win': 'wDeath%', 'playername_avg_assists_win': 'wAssist%', 'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%', 'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'}) team_data = player_tables.drop_duplicates(subset = ['playername']) if win_loss == "Win": team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1) team_data['Death_Proj'] = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1) team_data['Assist_Proj'] = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1) team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1) team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']] else: team_data['Kill_Proj'] = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1) team_data['Death_Proj'] = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1) team_data['Assist_Proj'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1) team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1) team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']] return team_data.dropna().set_index('playername'), opp_boosts if st.button("Run"): team_data, opp_boost = init_team_data(selected_team, selected_opponent, win_loss, kill_prediction, death_prediction, start_date, end_date) # Create simulated percentiles sim_results = [] for idx, row in team_data.iterrows(): percentiles = simulate_stats(row) sim_results.append({ 'Player': idx, 'Position': row['position'], 'Stat': 'Kills', 'P10': percentiles['Kill_Proj'][0], 'P25': percentiles['Kill_Proj'][1], 'P50': percentiles['Kill_Proj'][2], 'P75': percentiles['Kill_Proj'][3], 'P90': percentiles['Kill_Proj'][4] }) # Repeat for other stats for stat, name in [('Death_Proj', 'Deaths'), ('Assist_Proj', 'Assists'), ('CS_Proj', 'CS')]: sim_results.append({ 'Player': idx, 'Position': row['position'], 'Stat': name, 'P10': percentiles[stat][0], 'P25': percentiles[stat][1], 'P50': percentiles[stat][2], 'P75': percentiles[stat][3], 'P90': percentiles[stat][4] }) sim_df = pd.DataFrame(sim_results) tab1, tab2 = st.tabs(["Team Data", "Opponent Data"]) with tab1: st.dataframe(team_data.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True) with tab2: st.dataframe(opp_boost.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) st.dataframe(sim_df.style.format(precision=2), use_container_width=True)