import streamlit as st st.set_page_config(layout="wide") import numpy as np import pandas as pd import pymongo import time @st.cache_resource def init_conn(): uri = st.secrets['mongo_uri'] client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) db = client["League_of_Legends_Database"] collection = db["gamelogs"] team_names = collection.distinct("teamname") player_names = collection.distinct("playername") return db, team_names, player_names db, team_names, player_names = init_conn() # Create sidebar container for options with st.sidebar: st.header("Team Analysis Options") selected_team = st.selectbox( "Select Team", options=team_names, index=team_names.index("T1") if "T1" in team_names else 0 ) st.subheader("Prediction Settings") win_loss = st.selectbox( "Select Win/Loss", options=["Win", "Loss"], index=0 ) kill_prediction = st.number_input( "Predicted Team Kills", min_value=0, max_value=100, value=15 ) death_prediction = st.number_input( "Predicted Team Deaths", min_value=0, max_value=100, value=10 ) @st.cache_data(ttl = 60) def init_team_data(team, win_loss, kill_prediction, death_prediction): collection = db["gamelogs"] cursor = collection.find({"teamname": team}) raw_display = pd.DataFrame(list(cursor)) raw_display = raw_display[['playername', 'teamname', 'playername_avg_kill_share_win', 'playername_avg_death_share_win', 'playername_avg_assist_share_win', 'playername_avg_cs_share_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_cs_share_loss']] raw_display = raw_display.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%', 'playername_avg_cs_share_win': 'wCS%', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%', 'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_cs_share_loss': 'lCS%'}) team_data = raw_display.drop_duplicates(subset = ['playername']) if win_loss == "Win": team_data['Kill_Proj'] = team_data['wKill%'] * kill_prediction team_data['Death_Proj'] = team_data['wDeath%'] * death_prediction else: team_data['Kill_Proj'] = team_data['lKill%'] * kill_prediction team_data['Death_Proj'] = team_data['lDeath%'] * death_prediction return team_data if st.button("Run"): st.dataframe(init_team_data(selected_team, win_loss, kill_prediction, death_prediction))