import streamlit as st st.set_page_config(layout="wide") import numpy as np import pandas as pd import pymongo import time from datetime import datetime, timedelta @st.cache_resource def init_conn(): uri = st.secrets['mongo_uri'] client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) db = client["League_of_Legends_Database"] collection = db["gamelogs"] min_date = datetime.strptime(collection.find_one({}, sort=[("date", 1)])["date"], "%Y-%m-%d %H:%M:%S") max_date = datetime.strptime(collection.find_one({}, sort=[("date", -1)])["date"], "%Y-%m-%d %H:%M:%S") team_names = collection.distinct("teamname") player_names = collection.distinct("playername") return db, team_names, player_names, min_date, max_date db, team_names, player_names, min_date, max_date = init_conn() display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}'} # Create sidebar container for options with st.sidebar: st.header("Team Analysis Options") # Date filtering options st.subheader("Date Range") date_filter = st.radio( "Select Date Range", ["Last Year", "Custom Range"] ) if date_filter == "Last Year": end_date = max_date start_date = (end_date - timedelta(days=365)) else: col1, col2 = st.columns(2) with col1: start_date = st.date_input( "Start Date", value=(max_date - timedelta(days=365)), min_value=min_date, max_value=max_date ) with col2: end_date = st.date_input( "End Date", value=max_date, min_value=min_date, max_value=max_date ) selected_team = st.selectbox( "Select Team", options=team_names, index=team_names.index("T1") if "T1" in team_names else 0 ) st.subheader("Prediction Settings") win_loss = st.selectbox( "Select Win/Loss", options=["Win", "Loss"], index=0 ) kill_prediction = st.number_input( "Predicted Team Kills", min_value=0, max_value=100, value=20 ) death_prediction = st.number_input( "Predicted Team Deaths", min_value=0, max_value=100, value=5 ) @st.cache_data(ttl = 100) def init_team_data(team, win_loss, kill_prediction, death_prediction, start_date, end_date): collection = db["gamelogs"] cursor = collection.find({"teamname": team, "date": {"$gte": start_date, "$lte": end_date}}) raw_display = pd.DataFrame(list(cursor)) raw_display = raw_display[['playername', 'teamname', 'playername_avg_kill_share_win', 'playername_avg_death_share_win', 'playername_avg_assist_share_win', 'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']] raw_display = raw_display.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%', 'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%', 'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'}) team_data = raw_display.drop_duplicates(subset = ['playername']) if win_loss == "Win": team_data['Kill_Proj'] = team_data['wKill%'] * kill_prediction team_data['Death_Proj'] = team_data['wDeath%'] * death_prediction team_data['Assist_Proj'] = team_data['wAssist%'] * kill_prediction team_data = team_data[['playername', 'teamname', 'wKill%', 'wDeath%', 'wAssist%', 'wCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']] else: team_data['Kill_Proj'] = team_data['lKill%'] * kill_prediction team_data['Death_Proj'] = team_data['lDeath%'] * death_prediction team_data['Assist_Proj'] = team_data['lAssist%'] * kill_prediction team_data = team_data[['playername', 'teamname', 'lKill%', 'lDeath%', 'lAssist%', 'lCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']] return team_data.dropna().reset_index(drop=True) if st.button("Run"): st.dataframe(init_team_data(selected_team, win_loss, kill_prediction, death_prediction, start_date, end_date).style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)