James McCool
Update query keys in app.py to use consistent casing for 'Site' and 'Slate' across Draftkings and Fanduel queries.
3bccd59
raw
history blame
42.2 kB
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["MLB_Database"]
return db
db = init_conn()
percentages_format = {'Exposure': '{:.2%}'}
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
st.markdown("""
<style>
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
padding: 4px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #FFD700;
color: white;
border-radius: 10px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stTabs [aria-selected="true"] {
background-color: #DAA520;
color: white;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #DAA520;
cursor: pointer;
}
</style>""", unsafe_allow_html=True)
@st.cache_data(ttl = 60)
def init_DK_seed_frames(sharp_split):
collection = db['DK_MLB_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
# Get the valid players from the Range of Outcomes collection
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find({"Site": "Draftkings", "Slate": "Main Slate"})
valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
collection = db["DK_MLB_seed_frame"]
cursor = collection.find().limit(sharp_split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
# Validate lineups against valid players
raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
# Remove any remaining NaN values
raw_display = raw_display.dropna()
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 60)
def init_DK_secondary_seed_frames(sharp_split):
collection = db['DK_MLB_secondary_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
# Get the valid players from the Range of Outcomes collection
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find({"Site": "Draftkings", "Slate": "Secondary Slate"})
valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
collection = db["DK_MLB_secondary_seed_frame"]
cursor = collection.find().limit(sharp_split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
# Validate lineups against valid players
raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
# Remove any remaining NaN values
raw_display = raw_display.dropna()
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 60)
def init_FD_seed_frames(sharp_split):
collection = db['FD_MLB_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
# Get the valid players from the Range of Outcomes collection
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find({"Site": "Fanduel", "Slate": "Main Slate"})
valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
collection = db["FD_MLB_seed_frame"]
cursor = collection.find().limit(sharp_split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
# Validate lineups against valid players
raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
# Remove any remaining NaN values
raw_display = raw_display.dropna()
FD_seed = raw_display.to_numpy()
return FD_seed
@st.cache_data(ttl = 60)
def init_FD_secondary_seed_frames(sharp_split):
collection = db['FD_MLB_secondary_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
# Get the valid players from the Range of Outcomes collection
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find({"Site": "Fanduel", "Slate": "Secondary Slate"})
valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
collection = db["FD_MLB_secondary_seed_frame"]
cursor = collection.find().limit(sharp_split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
# Validate lineups against valid players
raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
# Remove any remaining NaN values
raw_display = raw_display.dropna()
FD_seed = raw_display.to_numpy()
return FD_seed
@st.cache_data(ttl = 599)
def init_baselines():
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find()
load_display = pd.DataFrame(list(cursor))
load_display.replace('', np.nan, inplace=True)
load_display.rename(columns={"Fantasy": "Median", 'Name': 'Player', 'player_ID': 'player_id'}, inplace = True)
load_display = load_display[load_display['Median'] > 0]
dk_roo_raw = load_display[load_display['Site'] == 'Draftkings']
dk_roo_raw = dk_roo_raw[dk_roo_raw['Slate'] == 'Main Slate']
dk_roo_raw['STDev'] = dk_roo_raw['Median'] / 3
dk_raw = dk_roo_raw.dropna(subset=['Median'])
fd_roo_raw = load_display[load_display['Site'] == 'Fanduel']
fd_roo_raw = fd_roo_raw[fd_roo_raw['Slate'] == 'Main Slate']
fd_roo_raw['STDev'] = fd_roo_raw['Median'] / 3
fd_raw = fd_roo_raw.dropna(subset=['Median'])
dk_secondary_roo_raw = load_display[load_display['Site'] == 'Draftkings']
dk_secondary_roo_raw = dk_secondary_roo_raw[dk_secondary_roo_raw['Slate'] == 'Secondary Slate']
dk_secondary_roo_raw['STDev'] = dk_secondary_roo_raw['Median'] / 3
dk_secondary = dk_secondary_roo_raw.dropna(subset=['Median'])
fd_secondary_roo_raw = load_display[load_display['Site'] == 'Fanduel']
fd_secondary_roo_raw = fd_secondary_roo_raw[fd_secondary_roo_raw['Slate'] == 'Secondary Slate']
fd_secondary_roo_raw['STDev'] = fd_secondary_roo_raw['Median'] / 3
fd_secondary = fd_secondary_roo_raw.dropna(subset=['Median'])
teams_playing_count = len(dk_raw.Team.unique())
return dk_raw, fd_raw, dk_secondary, fd_secondary, teams_playing_count
@st.cache_data
def validate_lineup_players(df, valid_players, player_columns):
"""
Validates that all players in specified columns exist in valid_players set
Args:
df: DataFrame containing lineups
valid_players: Set of valid player names
player_columns: List of columns containing player names
Returns:
DataFrame with only valid lineups
"""
valid_rows = df[player_columns].apply(lambda x: x.isin(valid_players)).all(axis=1)
return df[valid_rows]
@st.cache_data
def convert_df(array):
array = pd.DataFrame(array, columns=column_names)
return array.to_csv().encode('utf-8')
@st.cache_data
def calculate_DK_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :9], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def calculate_FD_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :8], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size, teams_playing_count, site):
SimVar = 1
Sim_Winners = []
fp_array = seed_frame.copy()
# Pre-vectorize functions
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
st.write('Simulating contest on frames')
while SimVar <= Sim_size:
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
if site == 'Draftkings':
# Calculate stack multipliers first
stack_multiplier = np.ones(fp_random.shape[0]) # Start with no bonus
stack_multiplier += np.minimum(0.10, np.where(fp_random[:, 12] == 4, 0.025 * (teams_playing_count - 8), 0))
stack_multiplier += np.minimum(0.15, np.where(fp_random[:, 12] >= 5, 0.025 * (teams_playing_count - 12), 0))
elif site == 'Fanduel':
# Calculate stack multipliers first
stack_multiplier = np.ones(fp_random.shape[0]) # Start with no bonus
stack_multiplier += np.minimum(0.10, np.where(fp_random[:, 11] == 4, 0.025 * (teams_playing_count - 8), 0))
stack_multiplier += np.minimum(0.15, np.where(fp_random[:, 11] >= 5, 0.025 * (teams_playing_count - 12), 0))
# Apply multipliers to both loc and scale in the normal distribution
base_projections = np.sum(np.random.normal(
loc=vec_projection_map(fp_random[:, :-7]) * stack_multiplier[:, np.newaxis],
scale=vec_stdev_map(fp_random[:, :-7]) * stack_multiplier[:, np.newaxis]),
axis=1)
final_projections = base_projections
sample_arrays = np.c_[fp_random, final_projections]
if site == 'Draftkings':
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
elif site == 'Fanduel':
final_array = sample_arrays[sample_arrays[:, 9].argsort()[::-1]]
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
Sim_Winners.append(best_lineup)
SimVar += 1
return Sim_Winners
dk_raw, fd_raw, teams_playing_count = init_baselines()
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
with tab1:
with st.expander("Info and Filters"):
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
DK_seed = init_DK_seed_frames(10000)
FD_seed = init_FD_seed_frames(10000)
dk_raw, fd_raw, teams_playing_count = init_baselines()
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'), key='sim_slate_var1')
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
if contest_var1 == 'Small':
Contest_Size = 1000
elif contest_var1 == 'Medium':
Contest_Size = 5000
elif contest_var1 == 'Large':
Contest_Size = 10000
elif contest_var1 == 'Custom':
Contest_Size = st.number_input("Insert contest size", value=100, placeholder="Type a number under 10,000...")
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
if strength_var1 == 'Not Very':
sharp_split = 500000
elif strength_var1 == 'Below Average':
sharp_split = 250000
elif strength_var1 == 'Average':
sharp_split = 100000
elif strength_var1 == 'Above Average':
sharp_split = 50000
elif strength_var1 == 'Very':
sharp_split = 10000
if st.button("Run Contest Sim"):
if 'working_seed' in st.session_state:
st.session_state.maps_dict = {
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
}
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count, sim_site_var1)
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
#st.table(Sim_Winner_Frame)
# Initial setup
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# Type Casting
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# Sorting
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# Data Copying
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
# Data Copying
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
else:
if sim_site_var1 == 'Draftkings':
if sim_slate_var1 == 'Main Slate':
st.session_state.working_seed = init_DK_seed_frames(sharp_split)
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
raw_baselines = dk_raw
column_names = dk_columns
elif sim_site_var1 == 'Fanduel':
if sim_slate_var1 == 'Main Slate':
st.session_state.working_seed = init_FD_seed_frames(sharp_split)
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
raw_baselines = fd_raw
column_names = fd_columns
st.session_state.maps_dict = {
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
}
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count, sim_site_var1)
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
#st.table(Sim_Winner_Frame)
# Initial setup
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# Type Casting
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# Sorting
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# Data Copying
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
# Data Copying
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
st.session_state.freq_copy = st.session_state.Sim_Winner_Display
if sim_site_var1 == 'Draftkings':
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:10].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
freq_working['Freq'] = freq_working['Freq'].astype(int)
freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map'])
freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map'])
freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
freq_working['Exposure'] = freq_working['Freq']/(1000)
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.player_freq = freq_working.copy()
if sim_site_var1 == 'Draftkings':
sp_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
sp_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:1].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
sp_working['Freq'] = sp_working['Freq'].astype(int)
sp_working['Position'] = sp_working['Player'].map(st.session_state.maps_dict['Pos_map'])
sp_working['Salary'] = sp_working['Player'].map(st.session_state.maps_dict['Salary_map'])
sp_working['Proj Own'] = sp_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
sp_working['Exposure'] = sp_working['Freq']/(1000)
sp_working['Edge'] = sp_working['Exposure'] - sp_working['Proj Own']
sp_working['Team'] = sp_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.sp_freq = sp_working.copy()
if sim_site_var1 == 'Draftkings':
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,12:13].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
team_working['Freq'] = team_working['Freq'].astype(int)
team_working['Exposure'] = team_working['Freq']/(1000)
st.session_state.team_freq = team_working.copy()
if sim_site_var1 == 'Draftkings':
stack_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,13:14].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
stack_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,12:13].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
stack_working['Freq'] = stack_working['Freq'].astype(int)
stack_working['Exposure'] = stack_working['Freq']/(1000)
st.session_state.stack_freq = stack_working.copy()
with st.container():
if st.button("Reset Sim", key='reset_sim'):
for key in st.session_state.keys():
del st.session_state[key]
if 'player_freq' in st.session_state:
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
if player_split_var2 == 'Specific Players':
find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
elif player_split_var2 == 'Full Players':
find_var2 = st.session_state.player_freq.Player.values.tolist()
if player_split_var2 == 'Specific Players':
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
if player_split_var2 == 'Full Players':
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
if 'Sim_Winner_Display' in st.session_state:
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
if 'Sim_Winner_Export' in st.session_state:
st.download_button(
label="Export Full Frame",
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
file_name='MLB_consim_export.csv',
mime='text/csv',
)
tab1, tab2 = st.tabs(['Winning Frame Statistics', 'Stack Type Statistics'])
with tab1:
if 'Sim_Winner_Display' in st.session_state:
# Create a new dataframe with summary statistics
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
st.session_state.Sim_Winner_Display['salary'].min(),
st.session_state.Sim_Winner_Display['salary'].mean(),
st.session_state.Sim_Winner_Display['salary'].max(),
st.session_state.Sim_Winner_Display['salary'].std()
],
'Proj': [
st.session_state.Sim_Winner_Display['proj'].min(),
st.session_state.Sim_Winner_Display['proj'].mean(),
st.session_state.Sim_Winner_Display['proj'].max(),
st.session_state.Sim_Winner_Display['proj'].std()
],
'Own': [
st.session_state.Sim_Winner_Display['Own'].min(),
st.session_state.Sim_Winner_Display['Own'].mean(),
st.session_state.Sim_Winner_Display['Own'].max(),
st.session_state.Sim_Winner_Display['Own'].std()
],
'Fantasy': [
st.session_state.Sim_Winner_Display['Fantasy'].min(),
st.session_state.Sim_Winner_Display['Fantasy'].mean(),
st.session_state.Sim_Winner_Display['Fantasy'].max(),
st.session_state.Sim_Winner_Display['Fantasy'].std()
],
'GPP_Proj': [
st.session_state.Sim_Winner_Display['GPP_Proj'].min(),
st.session_state.Sim_Winner_Display['GPP_Proj'].mean(),
st.session_state.Sim_Winner_Display['GPP_Proj'].max(),
st.session_state.Sim_Winner_Display['GPP_Proj'].std()
]
})
# Set the index of the summary dataframe as the "Metric" column
summary_df = summary_df.set_index('Metric')
# Display the summary dataframe
st.subheader("Winning Frame Statistics")
st.dataframe(summary_df.style.format({
'Salary': '{:.2f}',
'Proj': '{:.2f}',
'Own': '{:.2f}',
'Fantasy': '{:.2f}',
'GPP_Proj': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True)
with tab2:
if 'Sim_Winner_Display' in st.session_state:
# Apply position mapping to FLEX column
stack_counts = st.session_state.freq_copy['Team_count'].value_counts()
# Calculate average statistics for each stack size
stack_stats = st.session_state.freq_copy.groupby('Team_count').agg({
'proj': 'mean',
'Own': 'mean',
'Fantasy': 'mean',
'GPP_Proj': 'mean'
})
# Combine counts and average statistics
stack_summary = pd.concat([stack_counts, stack_stats], axis=1)
stack_summary.columns = ['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
stack_summary = stack_summary.reset_index()
stack_summary.columns = ['Stack Size', 'Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
stack_summary = stack_summary.sort_values(by='Stack Size', ascending=True)
stack_summary = stack_summary.set_index('Stack Size')
# Display the summary dataframe
st.subheader("Stack Type Statistics")
st.dataframe(stack_summary.style.format({
'Count': '{:.0f}',
'Avg Proj': '{:.2f}',
'Avg Own': '{:.2f}',
'Avg Fantasy': '{:.2f}',
'Avg GPP_Proj': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']), use_container_width=True)
else:
st.write("Simulation data or position mapping not available.")
with st.container():
tab1, tab2, tab3, tab4 = st.tabs(['Overall Exposures', 'SP Exposures', 'Team Exposures', 'Stack Size Exposures'])
with tab1:
if 'player_freq' in st.session_state:
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.player_freq.to_csv().encode('utf-8'),
file_name='player_freq_export.csv',
mime='text/csv',
key='overall'
)
with tab2:
if 'sp_freq' in st.session_state:
st.dataframe(st.session_state.sp_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.sp_freq.to_csv().encode('utf-8'),
file_name='sp_freq.csv',
mime='text/csv',
key='sp'
)
with tab3:
if 'team_freq' in st.session_state:
st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.team_freq.to_csv().encode('utf-8'),
file_name='team_freq.csv',
mime='text/csv',
key='team'
)
with tab4:
if 'stack_freq' in st.session_state:
st.dataframe(st.session_state.stack_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.stack_freq.to_csv().encode('utf-8'),
file_name='stack_freq.csv',
mime='text/csv',
key='stack'
)
with tab2:
with st.expander("Info and Filters"):
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
DK_seed = init_DK_seed_frames(10000)
FD_seed = init_FD_seed_frames(10000)
dk_raw, fd_raw, teams_playing_count = init_baselines()
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'))
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=500, value=10, step=1)
if site_var1 == 'Draftkings':
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
elif team_var1 == 'Full Slate':
team_var2 = dk_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [5, 4, 3, 2, 1, 0]
raw_baselines = dk_raw
column_names = dk_columns
elif site_var1 == 'Fanduel':
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
elif team_var1 == 'Full Slate':
team_var2 = fd_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [5, 4, 3, 2, 1, 0]
raw_baselines = fd_raw
column_names = fd_columns
if st.button("Prepare data export", key='data_export'):
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
elif 'working_seed' not in st.session_state:
if site_var1 == 'Draftkings':
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
raw_baselines = dk_raw
column_names = dk_columns
elif slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var)
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
raw_baselines = dk_raw
column_names = dk_columns
elif site_var1 == 'Fanduel':
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
raw_baselines = fd_raw
column_names = fd_columns
elif slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var)
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
raw_baselines = fd_raw
column_names = fd_columns
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
data_export = st.session_state.working_seed.copy()
st.download_button(
label="Export optimals set",
data=convert_df(data_export),
file_name='MLB_optimals_export.csv',
mime='text/csv',
)
for key in st.session_state.keys():
del st.session_state[key]
if st.button("Load Data", key='load_data'):
if site_var1 == 'Draftkings':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
raw_baselines = dk_raw
column_names = dk_columns
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif site_var1 == 'Fanduel':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
raw_baselines = fd_raw
column_names = fd_columns
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
with st.container():
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)