James McCool commited on
Commit
392cecb
·
1 Parent(s): 8338949

Remove redundant mapping and validation steps in DK and FD seed frame initialization functions to streamline data processing.

Browse files
Files changed (1) hide show
  1. app.py +0 -27
app.py CHANGED
@@ -66,15 +66,6 @@ def init_DK_seed_frames(sharp_split):
66
 
67
  raw_display = pd.DataFrame(list(cursor))
68
  raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
69
- dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
70
- # Map names
71
- raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
72
-
73
- # Validate lineups against valid players
74
- raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
75
-
76
- # Remove any remaining NaN values
77
- raw_display = raw_display.dropna()
78
  DK_seed = raw_display.to_numpy()
79
 
80
  return DK_seed
@@ -97,12 +88,6 @@ def init_DK_secondary_seed_frames(sharp_split):
97
 
98
  raw_display = pd.DataFrame(list(cursor))
99
  raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
100
- dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
101
- # Map names
102
- raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
103
-
104
- # Validate lineups against valid players
105
- raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
106
 
107
  # Remove any remaining NaN values
108
  raw_display = raw_display.dropna()
@@ -128,12 +113,6 @@ def init_FD_seed_frames(sharp_split):
128
 
129
  raw_display = pd.DataFrame(list(cursor))
130
  raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
131
- dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
132
- # Map names
133
- raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
134
-
135
- # Validate lineups against valid players
136
- raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
137
 
138
  # Remove any remaining NaN values
139
  raw_display = raw_display.dropna()
@@ -159,12 +138,6 @@ def init_FD_secondary_seed_frames(sharp_split):
159
 
160
  raw_display = pd.DataFrame(list(cursor))
161
  raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
162
- dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
163
- # Map names
164
- raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
165
-
166
- # Validate lineups against valid players
167
- raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
168
 
169
  # Remove any remaining NaN values
170
  raw_display = raw_display.dropna()
 
66
 
67
  raw_display = pd.DataFrame(list(cursor))
68
  raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
 
 
 
 
 
 
 
 
 
69
  DK_seed = raw_display.to_numpy()
70
 
71
  return DK_seed
 
88
 
89
  raw_display = pd.DataFrame(list(cursor))
90
  raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
 
 
 
 
 
 
91
 
92
  # Remove any remaining NaN values
93
  raw_display = raw_display.dropna()
 
113
 
114
  raw_display = pd.DataFrame(list(cursor))
115
  raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
 
 
 
 
 
 
116
 
117
  # Remove any remaining NaN values
118
  raw_display = raw_display.dropna()
 
138
 
139
  raw_display = pd.DataFrame(list(cursor))
140
  raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
 
 
 
 
 
 
141
 
142
  # Remove any remaining NaN values
143
  raw_display = raw_display.dropna()