James McCool
commited on
Commit
·
392cecb
1
Parent(s):
8338949
Remove redundant mapping and validation steps in DK and FD seed frame initialization functions to streamline data processing.
Browse files
app.py
CHANGED
@@ -66,15 +66,6 @@ def init_DK_seed_frames(sharp_split):
|
|
66 |
|
67 |
raw_display = pd.DataFrame(list(cursor))
|
68 |
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
69 |
-
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
70 |
-
# Map names
|
71 |
-
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
72 |
-
|
73 |
-
# Validate lineups against valid players
|
74 |
-
raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
|
75 |
-
|
76 |
-
# Remove any remaining NaN values
|
77 |
-
raw_display = raw_display.dropna()
|
78 |
DK_seed = raw_display.to_numpy()
|
79 |
|
80 |
return DK_seed
|
@@ -97,12 +88,6 @@ def init_DK_secondary_seed_frames(sharp_split):
|
|
97 |
|
98 |
raw_display = pd.DataFrame(list(cursor))
|
99 |
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
100 |
-
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
101 |
-
# Map names
|
102 |
-
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
103 |
-
|
104 |
-
# Validate lineups against valid players
|
105 |
-
raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
|
106 |
|
107 |
# Remove any remaining NaN values
|
108 |
raw_display = raw_display.dropna()
|
@@ -128,12 +113,6 @@ def init_FD_seed_frames(sharp_split):
|
|
128 |
|
129 |
raw_display = pd.DataFrame(list(cursor))
|
130 |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
131 |
-
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
|
132 |
-
# Map names
|
133 |
-
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
134 |
-
|
135 |
-
# Validate lineups against valid players
|
136 |
-
raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
|
137 |
|
138 |
# Remove any remaining NaN values
|
139 |
raw_display = raw_display.dropna()
|
@@ -159,12 +138,6 @@ def init_FD_secondary_seed_frames(sharp_split):
|
|
159 |
|
160 |
raw_display = pd.DataFrame(list(cursor))
|
161 |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
162 |
-
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
|
163 |
-
# Map names
|
164 |
-
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
165 |
-
|
166 |
-
# Validate lineups against valid players
|
167 |
-
raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
|
168 |
|
169 |
# Remove any remaining NaN values
|
170 |
raw_display = raw_display.dropna()
|
|
|
66 |
|
67 |
raw_display = pd.DataFrame(list(cursor))
|
68 |
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
DK_seed = raw_display.to_numpy()
|
70 |
|
71 |
return DK_seed
|
|
|
88 |
|
89 |
raw_display = pd.DataFrame(list(cursor))
|
90 |
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
# Remove any remaining NaN values
|
93 |
raw_display = raw_display.dropna()
|
|
|
113 |
|
114 |
raw_display = pd.DataFrame(list(cursor))
|
115 |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
# Remove any remaining NaN values
|
118 |
raw_display = raw_display.dropna()
|
|
|
138 |
|
139 |
raw_display = pd.DataFrame(list(cursor))
|
140 |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
# Remove any remaining NaN values
|
143 |
raw_display = raw_display.dropna()
|