James McCool
commited on
Commit
·
85bca50
1
Parent(s):
0973679
Enhance app.py by introducing auxiliary seed frame initialization for Draftkings and Fanduel, allowing for additional player data retrieval. Update logic to support selection of auxiliary slates in the user interface, ensuring comprehensive data representation across all slate types.
Browse files
app.py
CHANGED
@@ -94,9 +94,31 @@ def init_DK_secondary_seed_frames(sharp_split):
|
|
94 |
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
95 |
# Map names
|
96 |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
DK_seed = raw_display.to_numpy()
|
101 |
|
102 |
return DK_seed
|
@@ -119,12 +141,9 @@ def init_FD_seed_frames(sharp_split):
|
|
119 |
|
120 |
raw_display = pd.DataFrame(list(cursor))
|
121 |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
122 |
-
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
123 |
# Map names
|
124 |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
125 |
-
|
126 |
-
# Remove any remaining NaN values
|
127 |
-
raw_display = raw_display.dropna()
|
128 |
FD_seed = raw_display.to_numpy()
|
129 |
|
130 |
return FD_seed
|
@@ -147,12 +166,34 @@ def init_FD_secondary_seed_frames(sharp_split):
|
|
147 |
|
148 |
raw_display = pd.DataFrame(list(cursor))
|
149 |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
150 |
-
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
# Map names
|
152 |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
153 |
-
|
154 |
-
# Remove any remaining NaN values
|
155 |
-
raw_display = raw_display.dropna()
|
156 |
FD_seed = raw_display.to_numpy()
|
157 |
|
158 |
return FD_seed
|
@@ -192,9 +233,21 @@ def init_baselines():
|
|
192 |
fd_secondary = fd_secondary_roo_raw.dropna(subset=['Median'])
|
193 |
fd_secondary = fd_secondary.rename(columns={'Own%': 'Own'})
|
194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
teams_playing_count = len(dk_raw.Team.unique())
|
196 |
|
197 |
-
return dk_raw, fd_raw, dk_secondary, fd_secondary, teams_playing_count
|
198 |
|
199 |
@st.cache_data
|
200 |
def validate_lineup_players(df, valid_players, player_columns):
|
@@ -275,7 +328,7 @@ def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size, teams_playing_cou
|
|
275 |
|
276 |
return Sim_Winners
|
277 |
|
278 |
-
dk_raw, fd_raw, dk_secondary, fd_secondary, teams_playing_count = init_baselines()
|
279 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
280 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
281 |
|
@@ -289,11 +342,11 @@ with tab1:
|
|
289 |
del st.session_state[key]
|
290 |
DK_seed = init_DK_seed_frames(10000)
|
291 |
FD_seed = init_FD_seed_frames(10000)
|
292 |
-
dk_raw, fd_raw, dk_secondary, fd_secondary, teams_playing_count = init_baselines()
|
293 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
294 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
295 |
|
296 |
-
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', '
|
297 |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
298 |
|
299 |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
@@ -362,12 +415,34 @@ with tab1:
|
|
362 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
363 |
raw_baselines = dk_raw
|
364 |
column_names = dk_columns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
elif sim_site_var1 == 'Fanduel':
|
366 |
if sim_slate_var1 == 'Main Slate':
|
367 |
st.session_state.working_seed = init_FD_seed_frames(sharp_split)
|
368 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
369 |
raw_baselines = fd_raw
|
370 |
column_names = fd_columns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
|
372 |
st.session_state.maps_dict = {
|
373 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
@@ -626,7 +701,7 @@ with tab2:
|
|
626 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
627 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
628 |
|
629 |
-
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'))
|
630 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
631 |
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
|
632 |
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=500, value=10, step=1)
|
@@ -686,10 +761,17 @@ with tab2:
|
|
686 |
elif slate_var1 == 'Secondary Slate':
|
687 |
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var)
|
688 |
|
689 |
-
dk_id_dict = dict(zip(
|
690 |
-
raw_baselines =
|
|
|
|
|
|
|
|
|
|
|
|
|
691 |
column_names = dk_columns
|
692 |
|
|
|
693 |
elif site_var1 == 'Fanduel':
|
694 |
if slate_var1 == 'Main Slate':
|
695 |
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
|
@@ -700,8 +782,14 @@ with tab2:
|
|
700 |
elif slate_var1 == 'Secondary Slate':
|
701 |
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var)
|
702 |
|
703 |
-
fd_id_dict = dict(zip(
|
704 |
-
raw_baselines =
|
|
|
|
|
|
|
|
|
|
|
|
|
705 |
column_names = fd_columns
|
706 |
if site_var1 == 'Draftkings':
|
707 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
|
@@ -737,7 +825,19 @@ with tab2:
|
|
737 |
|
738 |
raw_baselines = dk_raw
|
739 |
column_names = dk_columns
|
740 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
741 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
|
742 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
|
743 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
@@ -754,6 +854,18 @@ with tab2:
|
|
754 |
|
755 |
raw_baselines = fd_raw
|
756 |
column_names = fd_columns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
757 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
758 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
759 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
|
|
94 |
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
95 |
# Map names
|
96 |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
97 |
+
DK_seed = raw_display.to_numpy()
|
98 |
+
|
99 |
+
return DK_seed
|
100 |
+
|
101 |
+
@st.cache_data(ttl = 60)
|
102 |
+
def init_DK_auxiliary_seed_frames(sharp_split):
|
103 |
|
104 |
+
collection = db['DK_MLB_turbo_name_map']
|
105 |
+
cursor = collection.find()
|
106 |
+
raw_data = pd.DataFrame(list(cursor))
|
107 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
108 |
+
|
109 |
+
# Get the valid players from the Range of Outcomes collection
|
110 |
+
collection = db["Player_Range_Of_Outcomes"]
|
111 |
+
cursor = collection.find({"Site": "Draftkings", "Slate": "turbo_slate"})
|
112 |
+
valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
|
113 |
+
|
114 |
+
collection = db["DK_MLB_turbo_seed_frame"]
|
115 |
+
cursor = collection.find().limit(sharp_split)
|
116 |
+
|
117 |
+
raw_display = pd.DataFrame(list(cursor))
|
118 |
+
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
119 |
+
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
120 |
+
# Map names
|
121 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
122 |
DK_seed = raw_display.to_numpy()
|
123 |
|
124 |
return DK_seed
|
|
|
141 |
|
142 |
raw_display = pd.DataFrame(list(cursor))
|
143 |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
144 |
+
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
|
145 |
# Map names
|
146 |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
|
|
|
|
|
|
147 |
FD_seed = raw_display.to_numpy()
|
148 |
|
149 |
return FD_seed
|
|
|
166 |
|
167 |
raw_display = pd.DataFrame(list(cursor))
|
168 |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
169 |
+
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
|
170 |
+
# Map names
|
171 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
172 |
+
FD_seed = raw_display.to_numpy()
|
173 |
+
|
174 |
+
return FD_seed
|
175 |
+
|
176 |
+
@st.cache_data(ttl = 60)
|
177 |
+
def init_FD_auxiliary_seed_frames(sharp_split):
|
178 |
+
|
179 |
+
collection = db['FD_MLB_turbo_name_map']
|
180 |
+
cursor = collection.find()
|
181 |
+
raw_data = pd.DataFrame(list(cursor))
|
182 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
183 |
+
|
184 |
+
# Get the valid players from the Range of Outcomes collection
|
185 |
+
collection = db["Player_Range_Of_Outcomes"]
|
186 |
+
cursor = collection.find({"Site": "Fanduel", "Slate": "turbo_slate"})
|
187 |
+
valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
|
188 |
+
|
189 |
+
collection = db["FD_MLB_turbo_seed_frame"]
|
190 |
+
cursor = collection.find().limit(sharp_split)
|
191 |
+
|
192 |
+
raw_display = pd.DataFrame(list(cursor))
|
193 |
+
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
194 |
+
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
|
195 |
# Map names
|
196 |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
|
|
|
|
|
|
197 |
FD_seed = raw_display.to_numpy()
|
198 |
|
199 |
return FD_seed
|
|
|
233 |
fd_secondary = fd_secondary_roo_raw.dropna(subset=['Median'])
|
234 |
fd_secondary = fd_secondary.rename(columns={'Own%': 'Own'})
|
235 |
|
236 |
+
dk_auxiliary_roo_raw = load_display[load_display['Site'] == 'Draftkings']
|
237 |
+
dk_auxiliary_roo_raw = dk_auxiliary_roo_raw[dk_auxiliary_roo_raw['Slate'] == 'turbo_slate']
|
238 |
+
dk_auxiliary_roo_raw['STDev'] = dk_auxiliary_roo_raw['Median'] / 3
|
239 |
+
dk_auxiliary = dk_auxiliary_roo_raw.dropna(subset=['Median'])
|
240 |
+
dk_auxiliary = dk_auxiliary.rename(columns={'Own%': 'Own'})
|
241 |
+
|
242 |
+
fd_auxiliary_roo_raw = load_display[load_display['Site'] == 'Fanduel']
|
243 |
+
fd_auxiliary_roo_raw = fd_auxiliary_roo_raw[fd_auxiliary_roo_raw['Slate'] == 'turbo_slate']
|
244 |
+
fd_auxiliary_roo_raw['STDev'] = fd_auxiliary_roo_raw['Median'] / 3
|
245 |
+
fd_auxiliary = fd_auxiliary_roo_raw.dropna(subset=['Median'])
|
246 |
+
fd_auxiliary = fd_auxiliary.rename(columns={'Own%': 'Own'})
|
247 |
+
|
248 |
teams_playing_count = len(dk_raw.Team.unique())
|
249 |
|
250 |
+
return dk_raw, fd_raw, dk_secondary, fd_secondary, dk_auxiliary, fd_auxiliary, teams_playing_count
|
251 |
|
252 |
@st.cache_data
|
253 |
def validate_lineup_players(df, valid_players, player_columns):
|
|
|
328 |
|
329 |
return Sim_Winners
|
330 |
|
331 |
+
dk_raw, fd_raw, dk_secondary, fd_secondary, dk_auxiliary, fd_auxiliary, teams_playing_count = init_baselines()
|
332 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
333 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
334 |
|
|
|
342 |
del st.session_state[key]
|
343 |
DK_seed = init_DK_seed_frames(10000)
|
344 |
FD_seed = init_FD_seed_frames(10000)
|
345 |
+
dk_raw, fd_raw, dk_secondary, fd_secondary, dk_auxiliary, fd_auxiliary, teams_playing_count = init_baselines()
|
346 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
347 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
348 |
|
349 |
+
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Auxiliary Slate'), key='sim_slate_var1')
|
350 |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
351 |
|
352 |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
|
|
415 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
416 |
raw_baselines = dk_raw
|
417 |
column_names = dk_columns
|
418 |
+
elif sim_slate_var1 == 'Secondary Slate':
|
419 |
+
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split)
|
420 |
+
dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
|
421 |
+
raw_baselines = dk_secondary
|
422 |
+
column_names = dk_columns
|
423 |
+
elif sim_slate_var1 == 'Auxiliary Slate':
|
424 |
+
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sharp_split)
|
425 |
+
dk_id_dict = dict(zip(dk_auxiliary.Player, dk_auxiliary.player_id))
|
426 |
+
raw_baselines = dk_auxiliary
|
427 |
+
column_names = dk_columns
|
428 |
+
|
429 |
elif sim_site_var1 == 'Fanduel':
|
430 |
if sim_slate_var1 == 'Main Slate':
|
431 |
st.session_state.working_seed = init_FD_seed_frames(sharp_split)
|
432 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
433 |
raw_baselines = fd_raw
|
434 |
column_names = fd_columns
|
435 |
+
elif sim_slate_var1 == 'Secondary Slate':
|
436 |
+
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split)
|
437 |
+
fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
|
438 |
+
raw_baselines = fd_secondary
|
439 |
+
column_names = fd_columns
|
440 |
+
elif sim_slate_var1 == 'Auxiliary Slate':
|
441 |
+
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sharp_split)
|
442 |
+
fd_id_dict = dict(zip(fd_auxiliary.Player, fd_auxiliary.player_id))
|
443 |
+
raw_baselines = fd_auxiliary
|
444 |
+
column_names = fd_columns
|
445 |
+
|
446 |
|
447 |
st.session_state.maps_dict = {
|
448 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
|
|
701 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
702 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
703 |
|
704 |
+
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Auxiliary Slate'))
|
705 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
706 |
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
|
707 |
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=500, value=10, step=1)
|
|
|
761 |
elif slate_var1 == 'Secondary Slate':
|
762 |
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var)
|
763 |
|
764 |
+
dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
|
765 |
+
raw_baselines = dk_secondary
|
766 |
+
column_names = dk_columns
|
767 |
+
elif slate_var1 == 'Auxiliary Slate':
|
768 |
+
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sharp_split_var)
|
769 |
+
|
770 |
+
dk_id_dict = dict(zip(dk_auxiliary.Player, dk_auxiliary.player_id))
|
771 |
+
raw_baselines = dk_auxiliary
|
772 |
column_names = dk_columns
|
773 |
|
774 |
+
|
775 |
elif site_var1 == 'Fanduel':
|
776 |
if slate_var1 == 'Main Slate':
|
777 |
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
|
|
|
782 |
elif slate_var1 == 'Secondary Slate':
|
783 |
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var)
|
784 |
|
785 |
+
fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
|
786 |
+
raw_baselines = fd_secondary
|
787 |
+
column_names = fd_columns
|
788 |
+
elif slate_var1 == 'Auxiliary Slate':
|
789 |
+
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sharp_split_var)
|
790 |
+
|
791 |
+
fd_id_dict = dict(zip(fd_auxiliary.Player, fd_auxiliary.player_id))
|
792 |
+
raw_baselines = fd_auxiliary
|
793 |
column_names = fd_columns
|
794 |
if site_var1 == 'Draftkings':
|
795 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
|
|
|
825 |
|
826 |
raw_baselines = dk_raw
|
827 |
column_names = dk_columns
|
828 |
+
elif slate_var1 == 'Secondary Slate':
|
829 |
+
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var)
|
830 |
+
|
831 |
+
dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
|
832 |
+
raw_baselines = dk_secondary
|
833 |
+
column_names = dk_columns
|
834 |
+
elif slate_var1 == 'Auxiliary Slate':
|
835 |
+
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sharp_split_var)
|
836 |
+
|
837 |
+
dk_id_dict = dict(zip(dk_auxiliary.Player, dk_auxiliary.player_id))
|
838 |
+
raw_baselines = dk_auxiliary
|
839 |
+
column_names = dk_columns
|
840 |
+
|
841 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
|
842 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
|
843 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
|
|
854 |
|
855 |
raw_baselines = fd_raw
|
856 |
column_names = fd_columns
|
857 |
+
elif slate_var1 == 'Secondary Slate':
|
858 |
+
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var)
|
859 |
+
|
860 |
+
fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
|
861 |
+
raw_baselines = fd_secondary
|
862 |
+
column_names = fd_columns
|
863 |
+
elif slate_var1 == 'Auxiliary Slate':
|
864 |
+
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sharp_split_var)
|
865 |
+
|
866 |
+
fd_id_dict = dict(zip(fd_auxiliary.Player, fd_auxiliary.player_id))
|
867 |
+
raw_baselines = fd_auxiliary
|
868 |
+
column_names = fd_columns
|
869 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
870 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
871 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|