James McCool
commited on
Commit
·
c2f648d
1
Parent(s):
5611fc5
Enhance seed frame initialization in app.py by adding name mapping for player positions in Draftkings and Fanduel functions, ensuring consistent data representation across all seed frames.
Browse files
app.py
CHANGED
@@ -66,6 +66,9 @@ def init_DK_seed_frames(sharp_split):
|
|
66 |
|
67 |
raw_display = pd.DataFrame(list(cursor))
|
68 |
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
|
|
|
|
69 |
DK_seed = raw_display.to_numpy()
|
70 |
|
71 |
return DK_seed
|
@@ -88,6 +91,9 @@ def init_DK_secondary_seed_frames(sharp_split):
|
|
88 |
|
89 |
raw_display = pd.DataFrame(list(cursor))
|
90 |
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
|
|
|
|
91 |
|
92 |
# Remove any remaining NaN values
|
93 |
raw_display = raw_display.dropna()
|
@@ -113,6 +119,9 @@ def init_FD_seed_frames(sharp_split):
|
|
113 |
|
114 |
raw_display = pd.DataFrame(list(cursor))
|
115 |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
|
|
|
|
116 |
|
117 |
# Remove any remaining NaN values
|
118 |
raw_display = raw_display.dropna()
|
@@ -138,6 +147,9 @@ def init_FD_secondary_seed_frames(sharp_split):
|
|
138 |
|
139 |
raw_display = pd.DataFrame(list(cursor))
|
140 |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
|
|
|
|
141 |
|
142 |
# Remove any remaining NaN values
|
143 |
raw_display = raw_display.dropna()
|
|
|
66 |
|
67 |
raw_display = pd.DataFrame(list(cursor))
|
68 |
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
69 |
+
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
70 |
+
# Map names
|
71 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
72 |
DK_seed = raw_display.to_numpy()
|
73 |
|
74 |
return DK_seed
|
|
|
91 |
|
92 |
raw_display = pd.DataFrame(list(cursor))
|
93 |
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
94 |
+
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
95 |
+
# Map names
|
96 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
97 |
|
98 |
# Remove any remaining NaN values
|
99 |
raw_display = raw_display.dropna()
|
|
|
119 |
|
120 |
raw_display = pd.DataFrame(list(cursor))
|
121 |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
122 |
+
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
123 |
+
# Map names
|
124 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
125 |
|
126 |
# Remove any remaining NaN values
|
127 |
raw_display = raw_display.dropna()
|
|
|
147 |
|
148 |
raw_display = pd.DataFrame(list(cursor))
|
149 |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
150 |
+
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
151 |
+
# Map names
|
152 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
153 |
|
154 |
# Remove any remaining NaN values
|
155 |
raw_display = raw_display.dropna()
|