James McCool commited on
Commit
c2f648d
·
1 Parent(s): 5611fc5

Enhance seed frame initialization in app.py by adding name mapping for player positions in Draftkings and Fanduel functions, ensuring consistent data representation across all seed frames.

Browse files
Files changed (1) hide show
  1. app.py +12 -0
app.py CHANGED
@@ -66,6 +66,9 @@ def init_DK_seed_frames(sharp_split):
66
 
67
  raw_display = pd.DataFrame(list(cursor))
68
  raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
 
 
 
69
  DK_seed = raw_display.to_numpy()
70
 
71
  return DK_seed
@@ -88,6 +91,9 @@ def init_DK_secondary_seed_frames(sharp_split):
88
 
89
  raw_display = pd.DataFrame(list(cursor))
90
  raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
 
 
 
91
 
92
  # Remove any remaining NaN values
93
  raw_display = raw_display.dropna()
@@ -113,6 +119,9 @@ def init_FD_seed_frames(sharp_split):
113
 
114
  raw_display = pd.DataFrame(list(cursor))
115
  raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
 
 
 
116
 
117
  # Remove any remaining NaN values
118
  raw_display = raw_display.dropna()
@@ -138,6 +147,9 @@ def init_FD_secondary_seed_frames(sharp_split):
138
 
139
  raw_display = pd.DataFrame(list(cursor))
140
  raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
 
 
 
141
 
142
  # Remove any remaining NaN values
143
  raw_display = raw_display.dropna()
 
66
 
67
  raw_display = pd.DataFrame(list(cursor))
68
  raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
69
+ dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
70
+ # Map names
71
+ raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
72
  DK_seed = raw_display.to_numpy()
73
 
74
  return DK_seed
 
91
 
92
  raw_display = pd.DataFrame(list(cursor))
93
  raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
94
+ dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
95
+ # Map names
96
+ raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
97
 
98
  # Remove any remaining NaN values
99
  raw_display = raw_display.dropna()
 
119
 
120
  raw_display = pd.DataFrame(list(cursor))
121
  raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
122
+ dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
123
+ # Map names
124
+ raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
125
 
126
  # Remove any remaining NaN values
127
  raw_display = raw_display.dropna()
 
147
 
148
  raw_display = pd.DataFrame(list(cursor))
149
  raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
150
+ dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
151
+ # Map names
152
+ raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
153
 
154
  # Remove any remaining NaN values
155
  raw_display = raw_display.dropna()