James McCool
Remove 'Minutes Proj' column from final_Proj DataFrame in app.py
c19888b
import numpy as np
import pandas as pd
import streamlit as st
import pymongo
st.set_page_config(layout="wide")
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["MLB_Database"]
return db
db = init_conn()
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
'4x%': '{:.2%}', 'GPP%': '{:.2%}'}
st.markdown("""
<style>
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
padding: 4px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #FFD700;
color: white;
border-radius: 10px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stTabs [aria-selected="true"] {
background-color: #DAA520;
color: white;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #DAA520;
cursor: pointer;
}
</style>""", unsafe_allow_html=True)
@st.cache_resource(ttl = 60)
def init_stat_load():
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Own%', 'Site', 'Slate']]
raw_display = raw_display.rename(columns={'Own%': 'Own'})
initial_concat = raw_display.sort_values(by='Own', ascending=False)
return initial_concat
@st.cache_data
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
proj_raw = init_stat_load()
st.header("MLB DFS Pivot Tool")
with st.expander("Info and Filters"):
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
proj_raw, timestamp = init_stat_load()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
for key in st.session_state.keys():
del st.session_state[key]
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
slate_var1 = st.radio("What slate are you working with?", ('Main Slate', 'Secondary Slate'), key='slate_var1')
if site_var1 == 'Draftkings':
raw_baselines = proj_raw[proj_raw['Site'] == 'Draftkings']
if slate_var1 == 'Main Slate':
raw_baselines = raw_baselines[raw_baselines['Slate'] == 'main_slate']
elif slate_var1 == 'Secondary Slate':
raw_baselines = raw_baselines[raw_baselines['Slate'] == 'secondary_slate']
raw_baselines = raw_baselines.sort_values(by='Own', ascending=False)
elif site_var1 == 'Fanduel':
raw_baselines = proj_raw[proj_raw['Site'] == 'Fanduel']
if slate_var1 == 'Main Slate':
raw_baselines = raw_baselines[raw_baselines['Slate'] == 'main_slate']
elif slate_var1 == 'Secondary Slate':
raw_baselines = raw_baselines[raw_baselines['Slate'] == 'secondary_slate']
raw_baselines = raw_baselines.sort_values(by='Own', ascending=False)
check_seq = st.radio("Do you want to check a single player or the top 10 in ownership?", ('Single Player', 'Top X Owned'), key='check_seq')
if check_seq == 'Single Player':
player_check = st.selectbox('Select player to create comps', options = raw_baselines['Player'].unique(), key='dk_player')
elif check_seq == 'Top X Owned':
top_x_var = st.number_input('How many players would you like to check?', min_value = 1, max_value = 10, value = 5, step = 1)
Salary_var = st.number_input('Acceptable +/- Salary range', min_value = 0, max_value = 1000, value = 300, step = 100)
Median_var = st.number_input('Acceptable +/- Median range', min_value = 0, max_value = 10, value = 3, step = 1)
pos_var1 = st.radio("Compare to all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_var1')
if site_var1 == 'Draftkings':
if pos_var1 == 'Specific Positions':
pos_var_list = st.multiselect('Which positions would you like to include?', options = ['SP', 'C', '1B', '2B', '3B', 'SS', 'OF'], key='pos_var_list')
elif pos_var1 == 'All Positions':
pos_var_list = ['SP', 'C', '1B', '2B', '3B', 'SS', 'OF']
elif site_var1 == 'Fanduel':
if pos_var1 == 'Specific Positions':
pos_var_list = st.multiselect('Which positions would you like to include?', options = ['P', 'C', '1B', '2B', '3B', 'SS', 'OF'], key='pos_var_list')
elif pos_var1 == 'All Positions':
pos_var_list = ['P', 'C', '1B', '2B', '3B', 'SS', 'OF']
split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
if split_var1 == 'Specific Games':
team_var1 = st.multiselect('Which teams would you like to include?', options = raw_baselines['Team'].unique(), key='team_var1')
elif split_var1 == 'Full Slate Run':
team_var1 = raw_baselines.Team.values.tolist()
placeholder = st.empty()
displayholder = st.empty()
if st.button('Simulate appropriate pivots'):
with placeholder:
if site_var1 == 'Draftkings':
working_roo = raw_baselines
working_roo.replace('', 0, inplace=True)
if site_var1 == 'Fanduel':
working_roo = raw_baselines
working_roo.replace('', 0, inplace=True)
own_dict = dict(zip(working_roo.Player, working_roo.Own))
team_dict = dict(zip(working_roo.Player, working_roo.Team))
pos_dict = dict(zip(working_roo.Player, working_roo.Position))
total_sims = 1000
if check_seq == 'Single Player':
player_var = working_roo.loc[working_roo['Player'] == player_check]
player_var = player_var.reset_index()
working_roo = working_roo[working_roo['Position'].apply(lambda x: any(pos in x.split('/') for pos in pos_var_list))]
working_roo = working_roo[working_roo['Team'].isin(team_var1)]
working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo['Salary'] <= player_var['Salary'][0] + Salary_var)]
working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
flex_file = working_roo[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling']]
flex_file['STD'] = (flex_file['Median']/3)
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file.copy()
overall_file = flex_file.copy()
salary_file = flex_file.copy()
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
salary_file[x] = salary_file['Salary']
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
salary_file = salary_file.div(1000)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
raw_lineups_file = players_only
for x in range(0,total_sims):
maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
players_only[x] = raw_lineups_file[x].rank(ascending=False)
players_only=players_only.drop(['Player'], axis=1)
salary_2x_check = (overall_file - (salary_file*2))
salary_3x_check = (overall_file - (salary_file*3))
salary_4x_check = (overall_file - (salary_file*4))
gpp_check = (overall_file - ((salary_file*5)+10))
players_only['Average_Rank'] = players_only.mean(axis=1)
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
players_only['GPP%'] = gpp_check[gpp_check >= 1].count(axis=1)/float(total_sims)
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%']]
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%']]
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
final_Proj['Own'] = final_Proj['Own'].astype('float')
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%', 'Own']]
final_Proj['Projection Rank'] = final_Proj.Top_finish.rank(pct = True)
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
final_Proj['LevX'] = (final_Proj['Projection Rank'] - final_Proj['Own Rank']) * 100
final_Proj['ValX'] = ((final_Proj[['2x%', '3x%', '4x%']].mean(axis=1))*100) + final_Proj['LevX']
final_Proj['ValX'] = np.where(final_Proj['ValX'] > 100, 100, final_Proj['ValX'])
final_Proj['ValX'] = np.where(final_Proj['ValX'] < 0, 0, final_Proj['ValX'])
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%', 'Own', 'LevX', 'ValX']]
final_Proj = final_Proj.set_index('Player')
st.session_state.final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
elif check_seq == 'Top X Owned':
if pos_var1 == 'Specific Positions':
raw_baselines = raw_baselines[raw_baselines['Position'].apply(lambda x: any(pos in x.split('/') for pos in pos_var_list))]
player_check = raw_baselines['Player'].head(top_x_var).tolist()
st.write(player_check)
final_proj_list = []
for players in player_check:
players_pos = pos_dict[players]
player_var = working_roo.loc[working_roo['Player'] == players]
player_var = player_var.reset_index()
working_roo_temp = working_roo[working_roo['Team'].isin(team_var1)]
working_roo_temp = working_roo_temp.loc[(working_roo_temp['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo_temp['Salary'] <= player_var['Salary'][0] + Salary_var)]
working_roo_temp = working_roo_temp.loc[(working_roo_temp['Median'] >= player_var['Median'][0] - Median_var) & (working_roo_temp['Median'] <= player_var['Median'][0] + Median_var)]
flex_file = working_roo_temp[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling']]
flex_file['STD'] = (flex_file['Median']/3)
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file.copy()
overall_file = flex_file.copy()
salary_file = flex_file.copy()
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
salary_file[x] = salary_file['Salary']
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
salary_file = salary_file.div(1000)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
raw_lineups_file = players_only
for x in range(0,total_sims):
maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
players_only[x] = raw_lineups_file[x].rank(ascending=False)
players_only=players_only.drop(['Player'], axis=1)
salary_2x_check = (overall_file - (salary_file*2))
salary_3x_check = (overall_file - (salary_file*3))
salary_4x_check = (overall_file - (salary_file*4))
gpp_check = (overall_file - ((salary_file*5)+10))
players_only['Average_Rank'] = players_only.mean(axis=1)
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
players_only['GPP%'] = gpp_check[gpp_check >= 1].count(axis=1)/float(total_sims)
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%']]
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%']]
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
final_Proj['Own'] = final_Proj['Own'].astype('float')
final_Proj['Projection Rank'] = final_Proj.Top_finish.rank(pct = True)
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
final_Proj['LevX'] = (final_Proj['Projection Rank'] - final_Proj['Own Rank']) * 100
final_Proj['ValX'] = ((final_Proj[['2x%', '3x%', '4x%']].mean(axis=1))*100) + final_Proj['LevX']
final_Proj['ValX'] = np.where(final_Proj['ValX'] > 100, 100, final_Proj['ValX'])
final_Proj['ValX'] = np.where(final_Proj['ValX'] < 0, 0, final_Proj['ValX'])
final_Proj['Pivot_source'] = players
final_Proj = final_Proj[['Player', 'Pivot_source', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%', 'Own', 'LevX', 'ValX']]
final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
final_proj_list.append(final_Proj)
st.write(f'finished run for {players}')
# Concatenate all the final_Proj dataframes
final_Proj_combined = pd.concat(final_proj_list)
final_Proj_combined = final_Proj_combined.sort_values(by='LevX', ascending=False)
final_Proj_combined = final_Proj_combined[final_Proj_combined['Player'] != final_Proj_combined['Pivot_source']]
st.session_state.final_Proj = final_Proj_combined.reset_index(drop=True) # Assign the combined dataframe back to final_Proj
placeholder.empty()
with displayholder.container():
if 'final_Proj' in st.session_state:
st.dataframe(st.session_state.final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(st.session_state.final_Proj),
file_name='MLB_pivot_export.csv',
mime='text/csv',
)
else:
st.write("Run some pivots my dude/dudette")