Spaces:
Running
Running
James McCool
Implement responsive column layout in app.py based on screen width to enhance user experience on mobile devices. Default to desktop layout if JavaScript fails to retrieve screen width.
f77a585
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
import gspread | |
import pymongo | |
import re | |
from streamlit_javascript import st_javascript | |
st.set_page_config(layout="wide") | |
screen_width = st_javascript("window.innerWidth") | |
# Default to desktop if JS fails | |
if screen_width is None: | |
screen_width = 1200 | |
def init_conn(): | |
uri = st.secrets['mongo_uri'] | |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) | |
db = client["MLB_Database"] | |
return db | |
db = init_conn() | |
game_format = {'Win%': '{:.2%}','First Inning Lead Percentage': '{:.2%}', 'Top Score': '{:.2%}', | |
'Fifth Inning Lead Percentage': '{:.2%}', '8+ Runs': '{:.2%}', 'LevX': '{:.2%}'} | |
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}', | |
'4x%': '{:.2%}'} | |
dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] | |
fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] | |
dk_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] | |
fd_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] | |
st.markdown(""" | |
<style> | |
/* Tab styling */ | |
.stTabs [data-baseweb="tab-list"] { | |
gap: 8px; | |
padding: 4px; | |
} | |
.stTabs [data-baseweb="tab"] { | |
height: 50px; | |
white-space: pre-wrap; | |
background-color: #DAA520; | |
color: white; | |
border-radius: 10px; | |
gap: 1px; | |
padding: 10px 20px; | |
font-weight: bold; | |
transition: all 0.3s ease; | |
} | |
.stTabs [aria-selected="true"] { | |
background-color: #DAA520; | |
border: 3px solid #FFD700; | |
color: white; | |
} | |
.stTabs [data-baseweb="tab"]:hover { | |
background-color: #FFD700; | |
cursor: pointer; | |
} | |
div[data-baseweb="select"] > div { | |
background-color: #DAA520; | |
color: white; | |
} | |
</style>""", unsafe_allow_html=True) | |
def init_baselines(): | |
collection = db["Hitter_Info"] | |
cursor = collection.find() | |
Hitter_info = pd.DataFrame(cursor) | |
LHP_Info = Hitter_info[Hitter_info['Set'] == 'LHP'].drop_duplicates(subset=['Player']) | |
RHP_Info = Hitter_info[Hitter_info['Set'] == 'RHP'].drop_duplicates(subset=['Player']) | |
collection = db["Pitcher_Info"] | |
cursor = collection.find() | |
Pitcher_info = pd.DataFrame(cursor) | |
Pitcher_info = Pitcher_info.rename(columns={'Names':'Player'}) | |
LHH_Info = Pitcher_info[Pitcher_info['Set'] == 'LHH'].drop_duplicates(subset=['Player']) | |
RHH_Info = Pitcher_info[Pitcher_info['Set'] == 'RHH'].drop_duplicates(subset=['Player']) | |
collection = db["Player_Range_Of_Outcomes"] | |
cursor = collection.find() | |
player_frame = pd.DataFrame(cursor) | |
roo_data = player_frame.drop(columns=['_id']) | |
roo_data['Salary'] = roo_data['Salary'].astype(int) | |
hold_frame = roo_data.copy() | |
hold_frame['Order'] = np.where(hold_frame['pos_group'] == 'Hitters', hold_frame['Player'].map(RHP_Info.set_index('Player')['Order']), 0) | |
hold_frame['Hand'] = np.where(hold_frame['pos_group'] == 'Hitters', hold_frame['Player'].map(RHP_Info.set_index('Player')['bats']), hold_frame['Player'].map(RHH_Info.set_index('Player')['Hand'])) | |
roo_data.insert(3, 'Hand', hold_frame['Hand']) | |
roo_data.insert(4, 'Order', hold_frame['Order'].astype(int)) | |
dk_roo = roo_data[roo_data['Site'] == 'Draftkings'] | |
dk_id_map = dict(zip(dk_roo['Player'], dk_roo['player_ID'])) | |
fd_roo = roo_data[roo_data['Site'] == 'Fanduel'] | |
fd_id_map = dict(zip(fd_roo['Player'], fd_roo['player_ID'])) | |
collection = db["Player_SD_Range_Of_Outcomes"] | |
cursor = collection.find() | |
player_frame = pd.DataFrame(cursor) | |
sd_roo_data = player_frame.drop(columns=['_id']) | |
sd_roo_data['Salary'] = sd_roo_data['Salary'].astype(int) | |
sd_roo_data = sd_roo_data.rename(columns={'Own': 'Own%'}) | |
collection = db["Scoring_Percentages"] | |
cursor = collection.find() | |
team_frame = pd.DataFrame(cursor) | |
scoring_percentages = team_frame.drop(columns=['_id']) | |
scoring_percentages['Runs/$'] = scoring_percentages['Avg Score'] / (scoring_percentages['Avg_Salary'] / 1000) | |
scoring_percentages = scoring_percentages[['Names', 'Avg_Salary', 'Stack_Prio', 'Opp_SP', 'Avg First Inning', 'First Inning Lead Percentage', 'Avg Fifth Inning', 'Fifth Inning Lead Percentage', 'Avg Score', 'Runs/$', '8+ runs', 'Win Percentage', | |
'DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'DK Main Top Score', 'FD Main Top Score', 'DK Secondary Top Score', 'FD Secondary Top Score', | |
'DK Turbo Top Score', 'FD Turbo Top Score']] | |
scoring_percentages['8+ runs'] = scoring_percentages['8+ runs'].replace('%', '', regex=True).astype(float) | |
scoring_percentages['Win Percentage'] = scoring_percentages['Win Percentage'].replace('%', '', regex=True).astype(float) | |
scoring_percentages['DK Main Top Score'] = scoring_percentages['DK Main Top Score'].replace('', np.nan).astype(float) | |
scoring_percentages['FD Main Top Score'] = scoring_percentages['FD Main Top Score'].replace('', np.nan).astype(float) | |
scoring_percentages['DK Secondary Top Score'] = scoring_percentages['DK Secondary Top Score'].replace('', np.nan).astype(float) | |
scoring_percentages['FD Secondary Top Score'] = scoring_percentages['FD Secondary Top Score'].replace('', np.nan).astype(float) | |
scoring_percentages['DK Turbo Top Score'] = scoring_percentages['DK Turbo Top Score'].replace('', np.nan).astype(float) | |
scoring_percentages['FD Turbo Top Score'] = scoring_percentages['FD Turbo Top Score'].replace('', np.nan).astype(float) | |
return roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo, dk_id_map, fd_id_map | |
def init_DK_lineups(type_var, slate_var): | |
if type_var == 'Regular': | |
if slate_var == 'Main': | |
collection = db['DK_MLB_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db['DK_MLB_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3'] | |
# Map names | |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict)) | |
elif slate_var == 'Secondary': | |
collection = db['DK_MLB_Secondary_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db['DK_MLB_Secondary_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3'] | |
# Map names | |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict)) | |
elif slate_var == 'Auxiliary': | |
collection = db['DK_MLB_Turbo_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db['DK_MLB_Turbo_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3'] | |
# Map names | |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict)) | |
elif type_var == 'Showdown': | |
if slate_var == 'Main': | |
collection = db['DK_MLB_SD1_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
elif slate_var == 'Secondary': | |
collection = db['DK_MLB_SD2_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
elif slate_var == 'Auxiliary': | |
collection = db['DK_MLB_SD3_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
DK_seed = raw_display.to_numpy() | |
return DK_seed | |
def init_FD_lineups(type_var,slate_var): | |
if type_var == 'Regular': | |
if slate_var == 'Main': | |
collection = db['FD_MLB_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db['FD_MLB_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL'] | |
# Map names | |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict)) | |
elif slate_var == 'Secondary': | |
collection = db['FD_MLB_Secondary_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db['FD_MLB_Secondary_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL'] | |
# Map names | |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict)) | |
elif slate_var == 'Auxiliary': | |
collection = db['FD_MLB_Turbo_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db['FD_MLB_Turbo_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL'] | |
# Map names | |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict)) | |
elif type_var == 'Showdown': | |
if slate_var == 'Main': | |
collection = db['FD_MLB_SD1_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
elif slate_var == 'Secondary': | |
collection = db['FD_MLB_SD2_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
elif slate_var == 'Auxiliary': | |
collection = db['FD_MLB_SD3_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
FD_seed = raw_display.to_numpy() | |
return FD_seed | |
def convert_df_to_csv(df): | |
return df.to_csv().encode('utf-8') | |
def convert_df(array): | |
array = pd.DataFrame(array, columns=column_names) | |
return array.to_csv().encode('utf-8') | |
col1, col2 = st.columns([1, 9]) | |
with col1: | |
if st.button("Load/Reset Data", key='reset'): | |
st.cache_data.clear() | |
roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo, dk_id_map, fd_id_map = init_baselines() | |
hold_display = roo_data | |
dk_lineups = init_DK_lineups('Regular', 'Main') | |
fd_lineups = init_FD_lineups('Regular', 'Main') | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
with col2: | |
with st.container(): | |
col1, col2 = st.columns([3, 3]) | |
with col1: | |
view_var = st.selectbox("Select view", ["Simple", "Advanced"], key='view_var') | |
with col2: | |
site_var = st.selectbox("What site do you want to view?", ('Draftkings', 'Fanduel'), key='site_var') | |
tab1, tab2, tab3, tab4 = st.tabs(["Scoring Percentages", "Player ROO", "Optimals", "Handbuilder"]) | |
roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo, dk_id_map, fd_id_map = init_baselines() | |
hold_display = roo_data | |
with tab1: | |
st.header("Scoring Percentages") | |
with st.expander("Info and Filters"): | |
with st.container(): | |
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Turbo Slate'), key='slate_var1') | |
prio_split = st.radio("Do you want to isolate a specific Stack Priority?", ('No', 'Yes'), key='prio_split') | |
if prio_split == 'Yes': | |
prio_var = st.radio("Which Stack Priority are you looking for?", ['OF_Prio', 'IF_Prio'], key='prio_var') | |
else: | |
prio_var = None | |
if site_var == 'Draftkings': | |
if slate_var1 == 'Main Slate': | |
scoring_percentages = scoring_percentages[scoring_percentages['DK Main Slate'] == 1] | |
elif slate_var1 == 'Secondary Slate': | |
scoring_percentages = scoring_percentages[scoring_percentages['DK Secondary Slate'] == 1] | |
elif slate_var1 == 'Turbo Slate': | |
scoring_percentages = scoring_percentages[scoring_percentages['DK Turbo Slate'] == 1] | |
elif site_var == 'Fanduel': | |
if slate_var1 == 'Main Slate': | |
scoring_percentages = scoring_percentages[scoring_percentages['FD Main Slate'] == 1] | |
elif slate_var1 == 'Secondary Slate': | |
scoring_percentages = scoring_percentages[scoring_percentages['FD Secondary Slate'] == 1] | |
elif slate_var1 == 'Turbo Slate': | |
scoring_percentages = scoring_percentages[scoring_percentages['FD Turbo Slate'] == 1] | |
dk_hitters_only = dk_roo[dk_roo['pos_group'] != 'Pitchers'] | |
if slate_var1 == 'Main Slate': | |
dk_hitters_only = dk_hitters_only[dk_hitters_only['Slate'] == 'main_slate'] | |
elif slate_var1 == 'Secondary Slate': | |
dk_hitters_only = dk_hitters_only[dk_hitters_only['Slate'] == 'secondary_slate'] | |
elif slate_var1 == 'Turbo Slate': | |
dk_hitters_only = dk_hitters_only[dk_hitters_only['Slate'] == 'turbo_slate'] | |
dk_hitters_only = dk_hitters_only.replace('CWS', 'CHW') | |
dk_team_ownership = dk_hitters_only.groupby('Team')['Own%'].sum().reset_index() | |
fd_hitters_only = fd_roo[fd_roo['pos_group'] != 'Pitchers'] | |
if slate_var1 == 'Main Slate': | |
fd_hitters_only = fd_hitters_only[fd_hitters_only['Slate'] == 'main_slate'] | |
elif slate_var1 == 'Secondary Slate': | |
fd_hitters_only = fd_hitters_only[fd_hitters_only['Slate'] == 'secondary_slate'] | |
elif slate_var1 == 'Turbo Slate': | |
fd_hitters_only = fd_hitters_only[fd_hitters_only['Slate'] == 'turbo_slate'] | |
fd_hitters_only = fd_hitters_only.replace('CWS', 'CHW') | |
fd_team_ownership = fd_hitters_only.groupby('Team')['Own%'].sum().reset_index() | |
scoring_percentages = scoring_percentages.merge(dk_team_ownership, left_on='Names', right_on='Team', how='left') | |
scoring_percentages.rename(columns={'Own%': 'DK Own%'}, inplace=True) | |
scoring_percentages.drop('Team', axis=1, inplace=True) | |
scoring_percentages = scoring_percentages.merge(fd_team_ownership, left_on='Names', right_on='Team', how='left') | |
scoring_percentages.rename(columns={'Own%': 'FD Own%'}, inplace=True) | |
scoring_percentages.drop('Team', axis=1, inplace=True) | |
if site_var == 'Draftkings': | |
if slate_var1 == 'Main Slate': | |
scoring_percentages['DK LevX'] = scoring_percentages['DK Main Top Score'].rank(pct=True).astype(float) - scoring_percentages['DK Own%'].rank(pct=True).astype(float) | |
scoring_percentages = scoring_percentages.rename(columns={'DK Main Top Score': 'Top Score'}) | |
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Secondary Top Score', 'FD Secondary Top Score', 'DK Turbo Top Score', 'FD Turbo Top Score'], axis=1) | |
elif slate_var1 == 'Secondary Slate': | |
scoring_percentages['DK LevX'] = scoring_percentages['DK Secondary Top Score'].rank(pct=True).astype(float) - scoring_percentages['DK Own%'].rank(pct=True).astype(float) | |
scoring_percentages = scoring_percentages.rename(columns={'DK Secondary Top Score': 'Top Score'}) | |
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Main Top Score', 'FD Secondary Top Score', 'DK Turbo Top Score', 'FD Turbo Top Score'], axis=1) | |
elif slate_var1 == 'Turbo Slate': | |
scoring_percentages['DK LevX'] = scoring_percentages['DK Turbo Top Score'].rank(pct=True).astype(float) - scoring_percentages['DK Own%'].rank(pct=True).astype(float) | |
scoring_percentages = scoring_percentages.rename(columns={'DK Turbo Top Score': 'Top Score'}) | |
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Main Top Score', 'FD Secondary Top Score', 'DK Secondary Top Score', 'FD Turbo Top Score'], axis=1) | |
elif site_var == 'Fanduel': | |
if slate_var1 == 'Main Slate': | |
scoring_percentages['FD LevX'] = scoring_percentages['FD Main Top Score'].rank(pct=True).astype(float) - scoring_percentages['FD Own%'].rank(pct=True).astype(float) | |
scoring_percentages = scoring_percentages.rename(columns={'FD Main Top Score': 'Top Score'}) | |
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'DK Main Top Score', 'DK Secondary Top Score', 'FD Secondary Top Score', 'DK Turbo Top Score', 'FD Turbo Top Score'], axis=1) | |
elif slate_var1 == 'Secondary Slate': | |
scoring_percentages['FD LevX'] = scoring_percentages['FD Secondary Top Score'].rank(pct=True).astype(float) - scoring_percentages['FD Own%'].rank(pct=True).astype(float) | |
scoring_percentages = scoring_percentages.rename(columns={'FD Secondary Top Score': 'Top Score'}) | |
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Main Top Score', 'DK Secondary Top Score', 'DK Turbo Top Score', 'FD Turbo Top Score'], axis=1) | |
elif slate_var1 == 'Turbo Slate': | |
scoring_percentages['FD LevX'] = scoring_percentages['FD Turbo Top Score'].rank(pct=True).astype(float) - scoring_percentages['FD Own%'].rank(pct=True).astype(float) | |
scoring_percentages = scoring_percentages.rename(columns={'FD Turbo Top Score': 'Top Score'}) | |
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Main Top Score', 'FD Secondary Top Score', 'DK Secondary Top Score', 'DK Turbo Top Score'], axis=1) | |
scoring_percentages = scoring_percentages.sort_values(by='8+ runs', ascending=False) | |
if site_var == 'Draftkings': | |
scoring_percentages = scoring_percentages.rename(columns={'DK LevX': 'LevX', 'DK Own%': 'Own%', 'Avg Score': 'Runs', 'Win Percentage': 'Win%', '8+ runs': '8+ Runs'}) | |
scoring_percentages = scoring_percentages.drop(['FD Own%'], axis=1) | |
elif site_var == 'Fanduel': | |
scoring_percentages = scoring_percentages.rename(columns={'FD LevX': 'LevX', 'FD Own%': 'Own%', 'Avg Score': 'Runs', 'Win Percentage': 'Win%', '8+ runs': '8+ Runs'}) | |
scoring_percentages = scoring_percentages.drop(['DK Own%'], axis=1) | |
if view_var == "Simple": | |
scoring_percentages = scoring_percentages[['Names', 'Runs', '8+ Runs', 'Win%', 'LevX', 'Own%']] | |
scoring_percentages = scoring_percentages.set_index('Names', drop=True) | |
st.dataframe(scoring_percentages.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own%']).format(game_format, precision=2), height=750, use_container_width = True) | |
elif view_var == "Advanced": | |
if prio_var is not None: | |
scoring_percentages = scoring_percentages[scoring_percentages['Stack_Prio'] == prio_var] | |
scoring_percentages = scoring_percentages.set_index('Names', drop=True) | |
st.dataframe(scoring_percentages.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Avg_Salary', 'Own%']).format(game_format, precision=2), height=750, use_container_width = True) | |
with tab2: | |
st.header("Player ROO") | |
with st.expander("Info and Filters"): | |
with st.container(): | |
slate_type_var2 = st.radio("Which slate type are you loading?", ('Regular', 'Showdown'), key='slate_type_var2') | |
slate_var2 = st.radio("Which slate data are you loading?", ('Main', 'Secondary', 'Auxiliary'), key='slate_var2') | |
group_var2 = st.radio("Which position group would you like to view?", ('All', 'Pitchers', 'Hitters'), key='group_var2') | |
team_var2 = st.selectbox("Which team would you like to view?", ['All', 'Specific'], key='team_var2') | |
if team_var2 == 'Specific': | |
team_select2 = st.multiselect("Select your team(s)", roo_data['Team'].unique(), key='team_select2') | |
else: | |
team_select2 = None | |
pos_var2 = st.selectbox("Which position(s) would you like to view?", ['All', 'Specific'], key='pos_var2') | |
if pos_var2 == 'Specific': | |
pos_select2 = st.multiselect("Select your position(s)", roo_data['Position'].unique(), key='pos_select2') | |
else: | |
pos_select2 = None | |
if slate_type_var2 == 'Regular': | |
if site_var == 'Draftkings': | |
player_roo_raw = dk_roo.copy() | |
if group_var2 == 'All': | |
pass | |
elif group_var2 == 'Pitchers': | |
player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Pitchers'] | |
elif group_var2 == 'Hitters': | |
player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Hitters'] | |
elif site_var == 'Fanduel': | |
player_roo_raw = fd_roo.copy() | |
if group_var2 == 'All': | |
pass | |
elif group_var2 == 'Pitchers': | |
player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Pitchers'] | |
elif group_var2 == 'Hitters': | |
player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Hitters'] | |
if slate_var2 == 'Main': | |
player_roo_raw = player_roo_raw[player_roo_raw['Slate'] == 'main_slate'] | |
elif slate_var2 == 'Secondary': | |
player_roo_raw = player_roo_raw[player_roo_raw['Slate'] == 'secondary_slate'] | |
elif slate_var2 == 'Auxiliary': | |
player_roo_raw = player_roo_raw[player_roo_raw['Slate'] == 'turbo_slate'] | |
elif slate_type_var2 == 'Showdown': | |
player_roo_raw = sd_roo_data.copy() | |
if site_var == 'Draftkings': | |
player_roo_raw['site'] = 'Draftkings' | |
elif site_var == 'Fanduel': | |
player_roo_raw['site'] = 'Fanduel' | |
if slate_var2 == 'Main': | |
player_roo_raw = player_roo_raw[player_roo_raw['slate'] == 'DK SD1'] | |
elif slate_var2 == 'Secondary': | |
player_roo_raw = player_roo_raw[player_roo_raw['slate'] == 'DK SD2'] | |
elif slate_var2 == 'Auxiliary': | |
player_roo_raw = player_roo_raw[player_roo_raw['slate'] == 'DK SD3'] | |
if team_select2: | |
player_roo_raw = player_roo_raw[player_roo_raw['Team'].isin(team_select2)] | |
if pos_select2: | |
position_mask = player_roo_raw['Position'].apply(lambda x: any(pos in x for pos in pos_select2)) | |
player_roo_raw = player_roo_raw[position_mask] | |
player_roo_disp = player_roo_raw | |
if slate_type_var2 == 'Regular': | |
player_roo_disp = player_roo_disp.drop(columns=['Site', 'Slate', 'pos_group', 'timestamp', 'player_ID']) | |
elif slate_type_var2 == 'Showdown': | |
player_roo_disp = player_roo_disp.drop(columns=['site', 'slate', 'version', 'timestamp']) | |
player_roo_disp = player_roo_disp.drop_duplicates(subset=['Player']) | |
if view_var == "Simple": | |
try: | |
player_roo_disp = player_roo_disp[['Player', 'Salary', 'Median', 'Ceiling', 'Own%', 'Position', 'Team']] | |
player_roo_disp = player_roo_disp.set_index('Player', drop=True) | |
st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Salary', 'Own%']).format(player_roo_format, precision=2), height=750, use_container_width = True) | |
except: | |
player_roo_disp = player_roo_disp.set_index('Player', drop=True) | |
st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Salary', 'Own%']).format(player_roo_format, precision=2), height=750, use_container_width = True) | |
elif view_var == "Advanced": | |
try: | |
player_roo_disp = player_roo_disp.set_index('Player', drop=True) | |
st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Order', 'Salary', 'Own%', 'Small Field Own%', 'Large Field Own%', 'Cash Own%']).format(player_roo_format, precision=2), height=750, use_container_width = True) | |
except: | |
player_roo_disp = player_roo_disp.set_index('Player', drop=True) | |
st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Order', 'Salary', 'Own%', 'Small Field Own%', 'Large Field Own%', 'Cash Own%']).format(player_roo_format, precision=2), height=750, use_container_width = True) | |
with tab3: | |
st.header("Optimals") | |
with st.expander("Info and Filters"): | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
slate_type_var3 = st.radio("Which slate type are you loading?", ('Regular', 'Showdown'), key='slate_type_var3') | |
if slate_type_var3 == 'Regular': | |
raw_baselines = roo_data | |
elif slate_type_var3 == 'Showdown': | |
raw_baselines = sd_roo_data | |
slate_var3 = st.radio("Which slate data are you loading?", ('Main', 'Secondary', 'Auxiliary'), key='slate_var3') | |
if slate_type_var3 == 'Regular': | |
if site_var == 'Draftkings': | |
dk_lineups = init_DK_lineups(slate_type_var3, slate_var3) | |
elif site_var == 'Fanduel': | |
fd_lineups = init_FD_lineups(slate_type_var3, slate_var3) | |
elif slate_type_var3 == 'Showdown': | |
if site_var == 'Draftkings': | |
dk_lineups = init_DK_lineups(slate_type_var3, slate_var3) | |
elif site_var == 'Fanduel': | |
fd_lineups = init_FD_lineups(slate_type_var3, slate_var3) | |
with col2: | |
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1) | |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1') | |
if player_var1 == 'Specific Players': | |
player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique()) | |
elif player_var1 == 'Full Slate': | |
player_var2 = raw_baselines.Player.values.tolist() | |
with col3: | |
if site_var == 'Draftkings': | |
salary_min_var = st.number_input("Minimum salary used", min_value = 0, max_value = 50000, value = 49000, step = 100, key = 'salary_min_var') | |
salary_max_var = st.number_input("Maximum salary used", min_value = 0, max_value = 50000, value = 50000, step = 100, key = 'salary_max_var') | |
elif site_var == 'Fanduel': | |
salary_min_var = st.number_input("Minimum salary used", min_value = 0, max_value = 35000, value = 34000, step = 100, key = 'salary_min_var') | |
salary_max_var = st.number_input("Maximum salary used", min_value = 0, max_value = 35000, value = 35000, step = 100, key = 'salary_max_var') | |
if site_var == 'Draftkings': | |
if slate_type_var3 == 'Regular': | |
ROO_slice = raw_baselines[raw_baselines['Site'] == 'Draftkings'] | |
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary'])) | |
column_names = dk_columns | |
elif slate_type_var3 == 'Showdown': | |
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary'])) | |
column_names = dk_sd_columns | |
# Get the minimum and maximum ownership values from dk_lineups | |
min_own = np.min(dk_lineups[:,12]) | |
max_own = np.max(dk_lineups[:,12]) | |
elif site_var == 'Fanduel': | |
raw_baselines = hold_display | |
if slate_type_var3 == 'Regular': | |
ROO_slice = raw_baselines[raw_baselines['Site'] == 'Fanduel'] | |
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary'])) | |
column_names = fd_columns | |
elif slate_type_var3 == 'Showdown': | |
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary'])) | |
column_names = fd_sd_columns | |
# Get the minimum and maximum ownership values from dk_lineups | |
min_own = np.min(fd_lineups[:,11]) | |
max_own = np.max(fd_lineups[:,11]) | |
if st.button("Prepare full data export", key='data_export'): | |
name_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names) | |
data_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names) | |
if site_var == 'Draftkings': | |
if slate_type_var3 == 'Regular': | |
map_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3'] | |
elif slate_type_var3 == 'Showdown': | |
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'] | |
for col_idx in map_columns: | |
data_export[col_idx] = data_export[col_idx].map(dk_id_map) | |
elif site_var == 'Fanduel': | |
if slate_type_var3 == 'Regular': | |
map_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL'] | |
elif slate_type_var3 == 'Showdown': | |
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4'] | |
for col_idx in map_columns: | |
data_export[col_idx] = data_export[col_idx].map(fd_id_map) | |
st.download_button( | |
label="Export optimals set (IDs)", | |
data=convert_df(data_export), | |
file_name='MLB_optimals_export.csv', | |
mime='text/csv', | |
) | |
st.download_button( | |
label="Export optimals set (Names)", | |
data=convert_df(name_export), | |
file_name='MLB_optimals_export.csv', | |
mime='text/csv', | |
) | |
if site_var == 'Draftkings': | |
if 'working_seed' in st.session_state: | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
st.session_state.working_seed = dk_lineups.copy() | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif 'working_seed' not in st.session_state: | |
st.session_state.working_seed = dk_lineups.copy() | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
st.session_state.working_seed = dk_lineups.copy() | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif site_var == 'Fanduel': | |
if 'working_seed' in st.session_state: | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
st.session_state.working_seed = fd_lineups.copy() | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif 'working_seed' not in st.session_state: | |
st.session_state.working_seed = fd_lineups.copy() | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
st.session_state.working_seed = fd_lineups.copy() | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
st.session_state.data_export_display = st.session_state.data_export_display[st.session_state.data_export_display['salary'] >= salary_min_var] | |
st.session_state.data_export_display = st.session_state.data_export_display[st.session_state.data_export_display['salary'] <= salary_max_var] | |
export_file = st.session_state.data_export_display.copy() | |
name_export = st.session_state.data_export_display.copy() | |
if site_var == 'Draftkings': | |
if slate_type_var3 == 'Regular': | |
map_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3'] | |
elif slate_type_var3 == 'Showdown': | |
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'] | |
for col_idx in map_columns: | |
export_file[col_idx] = export_file[col_idx].map(dk_id_map) | |
elif site_var == 'Fanduel': | |
if slate_type_var3 == 'Regular': | |
map_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL'] | |
elif slate_type_var3 == 'Showdown': | |
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4'] | |
for col_idx in map_columns: | |
export_file[col_idx] = export_file[col_idx].map(fd_id_map) | |
with st.container(): | |
if st.button("Reset Optimals", key='reset3'): | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
if site_var == 'Draftkings': | |
st.session_state.working_seed = dk_lineups.copy() | |
elif site_var == 'Fanduel': | |
st.session_state.working_seed = fd_lineups.copy() | |
if 'data_export_display' in st.session_state: | |
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True) | |
st.download_button( | |
label="Export display optimals (IDs)", | |
data=convert_df(export_file), | |
file_name='MLB_display_optimals.csv', | |
mime='text/csv', | |
) | |
st.download_button( | |
label="Export display optimals (Names)", | |
data=convert_df(name_export), | |
file_name='MLB_display_optimals.csv', | |
mime='text/csv', | |
) | |
with st.container(): | |
if slate_type_var3 == 'Regular': | |
if 'working_seed' in st.session_state: | |
# Create a new dataframe with summary statistics | |
if site_var == 'Draftkings': | |
summary_df = pd.DataFrame({ | |
'Metric': ['Min', 'Average', 'Max', 'STDdev'], | |
'Salary': [ | |
np.min(st.session_state.working_seed[:,10]), | |
np.mean(st.session_state.working_seed[:,10]), | |
np.max(st.session_state.working_seed[:,10]), | |
np.std(st.session_state.working_seed[:,10]) | |
], | |
'Proj': [ | |
np.min(st.session_state.working_seed[:,11]), | |
np.mean(st.session_state.working_seed[:,11]), | |
np.max(st.session_state.working_seed[:,11]), | |
np.std(st.session_state.working_seed[:,11]) | |
], | |
'Own': [ | |
np.min(st.session_state.working_seed[:,16]), | |
np.mean(st.session_state.working_seed[:,16]), | |
np.max(st.session_state.working_seed[:,16]), | |
np.std(st.session_state.working_seed[:,16]) | |
] | |
}) | |
elif site_var == 'Fanduel': | |
summary_df = pd.DataFrame({ | |
'Metric': ['Min', 'Average', 'Max', 'STDdev'], | |
'Salary': [ | |
np.min(st.session_state.working_seed[:,9]), | |
np.mean(st.session_state.working_seed[:,9]), | |
np.max(st.session_state.working_seed[:,9]), | |
np.std(st.session_state.working_seed[:,9]) | |
], | |
'Proj': [ | |
np.min(st.session_state.working_seed[:,10]), | |
np.mean(st.session_state.working_seed[:,10]), | |
np.max(st.session_state.working_seed[:,10]), | |
np.std(st.session_state.working_seed[:,10]) | |
], | |
'Own': [ | |
np.min(st.session_state.working_seed[:,15]), | |
np.mean(st.session_state.working_seed[:,15]), | |
np.max(st.session_state.working_seed[:,15]), | |
np.std(st.session_state.working_seed[:,15]) | |
] | |
}) | |
# Set the index of the summary dataframe as the "Metric" column | |
summary_df = summary_df.set_index('Metric') | |
# Display the summary dataframe | |
st.subheader("Optimal Statistics") | |
st.dataframe(summary_df.style.format({ | |
'Salary': '{:.2f}', | |
'Proj': '{:.2f}', | |
'Own': '{:.2f}' | |
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True) | |
with st.container(): | |
tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"]) | |
with tab1: | |
if 'data_export_display' in st.session_state: | |
if site_var == 'Draftkings': | |
if slate_type_var3 == 'Regular': | |
player_columns = st.session_state.data_export_display.iloc[:, :10] | |
elif slate_type_var3 == 'Showdown': | |
player_columns = st.session_state.data_export_display.iloc[:, :6] | |
elif site_var == 'Fanduel': | |
if slate_type_var3 == 'Regular': | |
player_columns = st.session_state.data_export_display.iloc[:, :9] | |
elif slate_type_var3 == 'Showdown': | |
player_columns = st.session_state.data_export_display.iloc[:, :5] | |
# Flatten the DataFrame and count unique values | |
value_counts = player_columns.values.flatten().tolist() | |
value_counts = pd.Series(value_counts).value_counts() | |
percentages = (value_counts / lineup_num_var * 100).round(2) | |
# Create a DataFrame with the results | |
summary_df = pd.DataFrame({ | |
'Player': value_counts.index, | |
'Frequency': value_counts.values, | |
'Percentage': percentages.values | |
}) | |
# Sort by frequency in descending order | |
summary_df['Salary'] = summary_df['Player'].map(player_salaries) | |
summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']] | |
summary_df = summary_df.sort_values('Frequency', ascending=False) | |
summary_df = summary_df.set_index('Player') | |
# Display the table | |
st.write("Player Frequency Table:") | |
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True) | |
st.download_button( | |
label="Export player frequency", | |
data=convert_df_to_csv(summary_df), | |
file_name='MLB_player_frequency.csv', | |
mime='text/csv', | |
) | |
with tab2: | |
if 'working_seed' in st.session_state: | |
if site_var == 'Draftkings': | |
if slate_type_var3 == 'Regular': | |
player_columns = st.session_state.working_seed[:, :10] | |
elif slate_type_var3 == 'Showdown': | |
player_columns = st.session_state.working_seed[:, :7] | |
elif site_var == 'Fanduel': | |
if slate_type_var3 == 'Regular': | |
player_columns = st.session_state.working_seed[:, :9] | |
elif slate_type_var3 == 'Showdown': | |
player_columns = st.session_state.working_seed[:, :6] | |
# Flatten the DataFrame and count unique values | |
value_counts = player_columns.flatten().tolist() | |
value_counts = pd.Series(value_counts).value_counts() | |
percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2) | |
# Create a DataFrame with the results | |
summary_df = pd.DataFrame({ | |
'Player': value_counts.index, | |
'Frequency': value_counts.values, | |
'Percentage': percentages.values | |
}) | |
# Sort by frequency in descending order | |
summary_df['Salary'] = summary_df['Player'].map(player_salaries) | |
summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']] | |
summary_df = summary_df.sort_values('Frequency', ascending=False) | |
summary_df = summary_df.set_index('Player') | |
# Display the table | |
st.write("Seed Frame Frequency Table:") | |
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True) | |
st.download_button( | |
label="Export seed frame frequency", | |
data=convert_df_to_csv(summary_df), | |
file_name='MLB_seed_frame_frequency.csv', | |
mime='text/csv', | |
) | |
with tab4: | |
st.header("Handbuilder") | |
# --- POSITION LIMITS --- | |
position_limits = { | |
'SP': 2, | |
'C': 1, | |
'1B': 1, | |
'2B': 1, | |
'3B': 1, | |
'SS': 1, | |
'OF': 3, | |
# Add more as needed | |
} | |
# --- LINEUP STATE --- | |
if 'handbuilder_lineup' not in st.session_state: | |
st.session_state['handbuilder_lineup'] = pd.DataFrame(columns=['Player', 'Order', 'Position', 'Team', 'Salary', 'Median', '2x%', 'Own%']) | |
if 'handbuilder_select_key' not in st.session_state: | |
st.session_state['handbuilder_select_key'] = 0 | |
# Count positions in the current lineup | |
lineup = st.session_state['handbuilder_lineup'] | |
slot_counts = lineup['Slot'].value_counts() if not lineup.empty else {} | |
# --- TEAM FILTER UI --- | |
with st.expander("Team Filters"): | |
all_teams = sorted(dk_roo['Team'].unique()) | |
st.markdown("**Toggle teams to include:**") | |
team_cols = st.columns(len(all_teams) // 2 + 1) | |
selected_teams = [] | |
for idx, team in enumerate(all_teams): | |
col = team_cols[idx % len(team_cols)] | |
if f"handbuilder_team_{team}" not in st.session_state: | |
st.session_state[f"handbuilder_team_{team}"] = False | |
checked = col.toggle(team, value=st.session_state[f"handbuilder_team_{team}"], key=f"handbuilder_team_{team}") | |
if checked: | |
selected_teams.append(team) | |
# If no teams selected, show all teams | |
if selected_teams: | |
player_select_df = dk_roo[ | |
dk_roo['Team'].isin(selected_teams) | |
][['Player', 'Position', 'Team', 'Salary', 'Median', '2x%', 'Order', 'Hand', 'Own%']].drop_duplicates(subset=['Player', 'Team']).sort_values(by='Order', ascending=True).copy() | |
else: | |
player_select_df = dk_roo[['Player', 'Position', 'Team', 'Salary', 'Median', '2x%', 'Order', 'Hand', 'Own%']].drop_duplicates(subset=['Player', 'Team']).copy() | |
# --- FILTER OUT PLAYERS WHOSE ALL ELIGIBLE POSITIONS ARE FILLED --- | |
def is_player_eligible(row): | |
eligible_positions = re.split(r'[/, ]+', row['Position']) | |
# Player is eligible if at least one of their positions is not at max | |
for pos in eligible_positions: | |
if slot_counts.get(pos, 0) < position_limits.get(pos, 0): | |
return True | |
return False | |
# player_select_df = player_select_df[player_select_df.apply(is_player_eligible, axis=1)] | |
col1, col2 = st.columns([1, 2]) | |
with col2: | |
st.subheader("Player Select") | |
event = st.dataframe( | |
player_select_df.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Order', 'Salary', 'Own%']).format(precision=2), | |
on_select="rerun", | |
selection_mode=["single-row"], | |
key=f"handbuilder_select_{st.session_state['handbuilder_select_key']}", | |
height=500, | |
hide_index=True | |
) | |
# If a row is selected, add that player to the lineup and reset selection | |
if event and "rows" in event.selection and len(event.selection["rows"]) > 0: | |
idx = event.selection["rows"][0] | |
player_row = player_select_df.iloc[[idx]] | |
eligible_positions = re.split(r'[/, ]+', player_row['Position'].iloc[0]) | |
# Find the first eligible slot that is not full | |
slot_to_fill = None | |
for pos in eligible_positions: | |
if slot_counts.get(pos, 0) < position_limits.get(pos, 0): | |
slot_to_fill = pos | |
break | |
if slot_to_fill is not None: | |
# Avoid duplicates | |
if not player_row['Player'].iloc[0] in st.session_state['handbuilder_lineup']['Player'].values: | |
# Add the slot info | |
player_row = player_row.assign(Slot=slot_to_fill) | |
st.session_state['handbuilder_lineup'] = pd.concat( | |
[st.session_state['handbuilder_lineup'], player_row[['Player', 'Order', 'Position', 'Team', 'Salary', 'Median', '2x%', 'Own%', 'Slot']]], | |
ignore_index=True | |
) | |
st.session_state['handbuilder_select_key'] += 1 | |
st.rerun() | |
with st.expander("Quick Fill Options"): | |
auto_team_var = st.selectbox("Auto Fill Team", options=all_teams) | |
auto_size_var = st.selectbox("Auto Fill Size", options=[3, 4, 5]) | |
auto_range_var = st.selectbox("Auto Fill Order", options=['Top', 'Mid', 'Wrap']) | |
# --- QUICK FILL LOGIC --- | |
if st.button("Quick Fill", key="quick_fill"): | |
# 1. Get all eligible players from the selected team, not already in the lineup | |
current_players = set(st.session_state['handbuilder_lineup']['Player']) | |
team_players = player_select_df[ | |
(player_select_df['Team'] == auto_team_var) & | |
(~player_select_df['Player'].isin(current_players)) | |
].copy() | |
# 2. Sort by Order | |
team_players = team_players.sort_values(by='Order') | |
# 3. Select the order range | |
if auto_range_var == 'Top': | |
selected_players = team_players[team_players['Order'] > 0].head(auto_size_var) | |
elif auto_range_var == 'Mid': | |
mid_start = max(0, (len(team_players[team_players['Order'] > 0]) - auto_size_var) // 2) | |
selected_players = team_players[team_players['Order'] > 0].iloc[mid_start:mid_start + auto_size_var] | |
elif auto_range_var == 'Wrap': | |
selected_players = team_players[team_players['Order'] > 0].tail(auto_size_var) | |
else: | |
selected_players = team_players[team_players['Order'] > 0].head(auto_size_var) | |
# 4. Add each player to the lineup, filling the first available eligible slot | |
for _, player_row in selected_players.iterrows(): | |
eligible_positions = re.split(r'[/, ]+', player_row['Position']) | |
slot_to_fill = None | |
for pos in eligible_positions: | |
if slot_counts.get(pos, 0) < position_limits.get(pos, 0): | |
slot_to_fill = pos | |
break | |
if slot_to_fill is not None: | |
# Avoid duplicates | |
if player_row['Player'] not in st.session_state['handbuilder_lineup']['Player'].values: | |
add_row = player_row.copy() | |
add_row['Slot'] = slot_to_fill | |
st.session_state['handbuilder_lineup'] = pd.concat( | |
[st.session_state['handbuilder_lineup'], pd.DataFrame([add_row[[ | |
'Player', 'Order', 'Position', 'Team', 'Salary', 'Median', '2x%', 'Own%', 'Slot' | |
]]])], | |
ignore_index=True | |
) | |
# Update slot_counts for next player | |
slot_counts[slot_to_fill] = slot_counts.get(slot_to_fill, 0) + 1 | |
st.rerun() | |
with col1: | |
st.subheader("Lineup Build") | |
# --- EXPLICIT LINEUP ORDER --- | |
lineup_slots = ['SP', 'SP', 'C', '1B', '2B', '3B', 'SS', 'OF', 'OF', 'OF'] | |
display_columns = ['Slot', 'Player', 'Order', 'Team', 'Salary', 'Median', 'Own%'] | |
filled_lineup = st.session_state['handbuilder_lineup'] | |
display_rows = [] | |
used_indices = set() | |
if not filled_lineup.empty: | |
for slot in lineup_slots: | |
match = filled_lineup[(filled_lineup['Slot'] == slot) & (~filled_lineup.index.isin(used_indices))] | |
if not match.empty: | |
row = match.iloc[0] | |
used_indices.add(match.index[0]) | |
display_rows.append({ | |
'Slot': slot, | |
'Player': row['Player'], | |
'Order': row['Order'], | |
'Position': row['Position'], | |
'Team': row['Team'], | |
'Salary': row['Salary'], | |
'Median': row['Median'], | |
'2x%': row['2x%'], | |
'Own%': row['Own%'] | |
}) | |
else: | |
display_rows.append({ | |
'Slot': slot, | |
'Player': '', | |
'Order': np.nan, | |
'Position': '', | |
'Team': '', | |
'Salary': np.nan, | |
'Median': np.nan, | |
'2x%': np.nan, | |
'Own%': np.nan | |
}) | |
lineup_display_df = pd.DataFrame(display_rows, columns=display_columns) | |
# Show the lineup table with single-row selection for removal | |
event_remove = st.dataframe( | |
lineup_display_df.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn', subset=['Median']).background_gradient(cmap='RdYlGn_r', subset=['Order', 'Salary', 'Own%']).format(precision=2), | |
on_select="rerun", | |
selection_mode=["single-row"], | |
key="lineup_remove", | |
height=445, | |
hide_index=True | |
) | |
# If a row is selected and not blank, remove that player from the lineup | |
if event_remove and "rows" in event_remove.selection and len(event_remove.selection["rows"]) > 0: | |
idx = event_remove.selection["rows"][0] | |
player_to_remove = lineup_display_df.iloc[idx]['Player'] | |
slot_to_remove = lineup_display_df.iloc[idx]['Slot'] | |
if player_to_remove: # Only remove if not blank | |
st.session_state['handbuilder_lineup'] = filled_lineup[ | |
~((filled_lineup['Player'] == player_to_remove) & (filled_lineup['Slot'] == slot_to_remove)) | |
] | |
st.rerun() | |
# --- SUMMARY ROW --- | |
if not filled_lineup.empty: | |
total_salary = filled_lineup['Salary'].sum() | |
total_median = filled_lineup['Median'].sum() | |
avg_2x = filled_lineup['2x%'].mean() | |
total_own = filled_lineup['Own%'].sum() | |
most_common_team = filled_lineup['Team'].mode()[0] if not filled_lineup['Team'].mode().empty else "" | |
summary_row = pd.DataFrame({ | |
'Slot': [''], | |
'Player': ['TOTAL'], | |
'Order': [''], | |
'Position': [''], | |
'Team': [most_common_team], | |
'Salary': [total_salary], | |
'Median': [total_median], | |
'2x%': [avg_2x], | |
'Own%': [total_own] | |
}) | |
summary_row = summary_row[['Salary', 'Median', 'Own%']].head(10) | |
if screen_width < 700: | |
# Mobile: Only two columns | |
col1, col3 = st.columns([2, 3]) | |
col2 = None | |
else: | |
col1, col2, col3 = st.columns([2, 1, 3]) | |
with col1: | |
if (10 - len(filled_lineup)) > 0: | |
st.markdown(f""" | |
<div style='text-align: left'> | |
<b>π° Per Player:</b> ${round((50000 - total_salary) / (10 - len(filled_lineup)), 0)} | |
</div> | |
""", | |
unsafe_allow_html=True) | |
else: | |
st.markdown(f""" | |
<div style='text-align: left'> | |
<b>π° Leftover:</b> ${round(50000 - total_salary, 0)} | |
</div> | |
""", | |
unsafe_allow_html=True) | |
with col3: | |
if total_salary <= 50000: | |
st.markdown( | |
f""" | |
<div style='text-align: right'> | |
<b>π° Salary:</b> ${round(total_salary, 0)} | |
<b>π₯ Median:</b> {round(total_median, 2)} | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
else: | |
st.markdown( | |
f""" | |
<div style='text-align: right'> | |
<b>β Salary:</b> ${round(total_salary, 0)} | |
<b>π₯ Median:</b> {round(total_median, 2)} | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
# Optionally, add a button to clear the lineup | |
if st.button("Clear Lineup", key='clear_lineup'): | |
st.session_state['handbuilder_lineup'] = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Median', '2x%', 'Own%', 'Slot', 'Order']) | |
st.rerun() |