Spaces:
Running
Running
James McCool
Update position group selection variable in app.py for improved clarity and consistency, changing 'pos_var2' to 'group_var2' in user interface elements and related logic for player data filtering.
66c8e7d
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
import gspread | |
import pymongo | |
st.set_page_config(layout="wide") | |
def init_conn(): | |
uri = st.secrets['mongo_uri'] | |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) | |
db = client["MLB_Database"] | |
db2 = client["MLB_DFS"] | |
return db, db2 | |
db, db2 = init_conn() | |
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}', 'Top Score': '{:.2%}', | |
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'} | |
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}', | |
'4x%': '{:.2%}'} | |
dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] | |
fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] | |
st.markdown(""" | |
<style> | |
/* Tab styling */ | |
.stTabs [data-baseweb="tab-list"] { | |
gap: 8px; | |
padding: 4px; | |
} | |
.stTabs [data-baseweb="tab"] { | |
height: 50px; | |
white-space: pre-wrap; | |
background-color: #DAA520; | |
color: white; | |
border-radius: 10px; | |
gap: 1px; | |
padding: 10px 20px; | |
font-weight: bold; | |
transition: all 0.3s ease; | |
} | |
.stTabs [aria-selected="true"] { | |
background-color: #DAA520; | |
border: 3px solid #FFD700; | |
color: white; | |
} | |
.stTabs [data-baseweb="tab"]:hover { | |
background-color: #FFD700; | |
cursor: pointer; | |
} | |
div[data-baseweb="select"] > div { | |
background-color: #DAA520; | |
color: white; | |
} | |
</style>""", unsafe_allow_html=True) | |
def init_baselines(): | |
collection = db["Player_Range_Of_Outcomes"] | |
cursor = collection.find() | |
player_frame = pd.DataFrame(cursor) | |
roo_data = player_frame.drop(columns=['_id']) | |
roo_data['Salary'] = roo_data['Salary'].astype(int) | |
dk_roo = roo_data[roo_data['Site'] == 'Draftkings'] | |
fd_roo = roo_data[roo_data['Site'] == 'Fanduel'] | |
collection = db["Player_SD_Range_Of_Outcomes"] | |
cursor = collection.find() | |
player_frame = pd.DataFrame(cursor) | |
sd_roo_data = player_frame.drop(columns=['_id']) | |
sd_roo_data['Salary'] = sd_roo_data['Salary'].astype(int) | |
sd_roo_data = sd_roo_data.rename(columns={'Own': 'Own%'}) | |
collection = db["Scoring_Percentages"] | |
cursor = collection.find() | |
team_frame = pd.DataFrame(cursor) | |
scoring_percentages = team_frame.drop(columns=['_id']) | |
scoring_percentages = scoring_percentages[['Names', 'Avg First Inning', 'First Inning Lead Percentage', 'Avg Fifth Inning', 'Fifth Inning Lead Percentage', 'Avg Score', '8+ runs', 'Win Percentage', 'Slate', 'Top Score']] | |
scoring_percentages['8+ runs'] = scoring_percentages['8+ runs'].replace('%', '', regex=True).astype(float) | |
scoring_percentages['Win Percentage'] = scoring_percentages['Win Percentage'].replace('%', '', regex=True).astype(float) | |
scoring_percentages['Top Score'] = scoring_percentages['Top Score'].replace('', np.nan).astype(float) | |
dk_hitters_only = dk_roo[dk_roo['pos_group'] != 'Pitchers'] | |
dk_hitters_only = dk_hitters_only.replace('CWS', 'CHW') | |
dk_team_ownership = dk_hitters_only.groupby('Team')['Own%'].sum().reset_index() | |
fd_hitters_only = fd_roo[fd_roo['pos_group'] != 'Pitchers'] | |
fd_hitters_only = fd_hitters_only.replace('CWS', 'CHW') | |
fd_team_ownership = fd_hitters_only.groupby('Team')['Own%'].sum().reset_index() | |
scoring_percentages = scoring_percentages.merge(dk_team_ownership, left_on='Names', right_on='Team', how='left') | |
scoring_percentages.rename(columns={'Own%': 'DK Own%'}, inplace=True) | |
scoring_percentages.drop('Team', axis=1, inplace=True) | |
scoring_percentages = scoring_percentages.merge(fd_team_ownership, left_on='Names', right_on='Team', how='left') | |
scoring_percentages.rename(columns={'Own%': 'FD Own%'}, inplace=True) | |
scoring_percentages.drop('Team', axis=1, inplace=True) | |
scoring_percentages['DK LevX'] = scoring_percentages['Top Score'].rank(pct=True).astype(float) - scoring_percentages['DK Own%'].rank(pct=True).astype(float) | |
scoring_percentages['FD LevX'] = scoring_percentages['Top Score'].rank(pct=True).astype(float) - scoring_percentages['FD Own%'].rank(pct=True).astype(float) | |
return roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo | |
def init_DK_lineups(type_var, slate_var): | |
if type_var == 'Regular': | |
if slate_var == 'Main': | |
collection = db['DK_MLB_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db['DK_MLB_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3'] | |
# Map names | |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict)) | |
elif slate_var == 'Secondary': | |
collection = db['DK_MLB_Secondary_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db['DK_MLB_Secondary_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3'] | |
# Map names | |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict)) | |
elif slate_var == 'Auxiliary': | |
collection = db['DK_MLB_Turbo_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db['DK_MLB_Turbo_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3'] | |
# Map names | |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict)) | |
elif type_var == 'Showdown': | |
if slate_var == 'Main': | |
collection = db2['DK_MLB_SD1_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']] | |
elif slate_var == 'Secondary': | |
collection = db2['DK_MLB_SD2_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']] | |
elif slate_var == 'Auxiliary': | |
collection = db2['DK_MLB_SD3_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']] | |
DK_seed = raw_display.to_numpy() | |
return DK_seed | |
def init_FD_lineups(type_var,slate_var): | |
if type_var == 'Regular': | |
if slate_var == 'Main': | |
collection = db['FD_MLB_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db['FD_MLB_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3'] | |
# Map names | |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict)) | |
elif slate_var == 'Secondary': | |
collection = db['FD_MLB_Secondary_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db['FD_MLB_Secondary_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3'] | |
# Map names | |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict)) | |
elif slate_var == 'Auxiliary': | |
collection = db['FD_MLB_Turbo_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db['FD_MLB_Turbo_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3'] | |
# Map names | |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict)) | |
elif type_var == 'Showdown': | |
if slate_var == 'Main': | |
collection = db2['FD_MLB_SD1_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']] | |
elif slate_var == 'Secondary': | |
collection = db2['FD_MLB_SD2_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']] | |
elif slate_var == 'Auxiliary': | |
collection = db2['FD_MLB_SD3_seed_frame'] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']] | |
FD_seed = raw_display.to_numpy() | |
return FD_seed | |
def convert_df_to_csv(df): | |
return df.to_csv().encode('utf-8') | |
def convert_df(array): | |
array = pd.DataFrame(array, columns=column_names) | |
return array.to_csv().encode('utf-8') | |
col1, col2 = st.columns([1, 9]) | |
with col1: | |
if st.button("Load/Reset Data", key='reset'): | |
st.cache_data.clear() | |
roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo = init_baselines() | |
hold_display = roo_data | |
dk_lineups = init_DK_lineups('Regular', 'Main') | |
fd_lineups = init_FD_lineups('Regular', 'Main') | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
with col2: | |
with st.container(): | |
col1, col2 = st.columns([3, 3]) | |
with col1: | |
view_var = st.selectbox("Select view", ["Simple", "Advanced"], key='view_var') | |
with col2: | |
site_var = st.selectbox("What site do you want to view?", ('Draftkings', 'Fanduel'), key='site_var') | |
tab1, tab2, tab3 = st.tabs(["Scoring Percentages", "Player ROO", "Optimals"]) | |
roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo = init_baselines() | |
hold_display = roo_data | |
with tab1: | |
st.header("Scoring Percentages") | |
with st.expander("Info and Filters"): | |
with st.container(): | |
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'All Games'), key='slate_var1') | |
own_var1 = st.radio("How would you like to display team ownership?", ('Sum', 'Average'), key='own_var1') | |
if slate_var1 == 'Main Slate': | |
scoring_percentages = scoring_percentages[scoring_percentages['Slate'] == 'Main'] | |
elif slate_var1 != 'Main Slate': | |
pass | |
scoring_percentages = scoring_percentages.sort_values(by='8+ runs', ascending=False) | |
scoring_percentages = scoring_percentages.drop('Slate', axis=1) | |
if view_var == "Simple": | |
scoring_percentages = scoring_percentages[['Names', 'Avg Score', '8+ runs', 'Win Percentage']] | |
st.dataframe(scoring_percentages.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), height=750, use_container_width = True, hide_index=True) | |
elif view_var == "Advanced": | |
st.dataframe(scoring_percentages.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), height=750, use_container_width = True, hide_index=True) | |
with tab2: | |
st.header("Player ROO") | |
with st.expander("Info and Filters"): | |
with st.container(): | |
slate_type_var2 = st.radio("Which slate type are you loading?", ('Regular', 'Showdown'), key='slate_type_var2') | |
slate_var2 = st.radio("Which slate data are you loading?", ('Main', 'Secondary', 'Auxiliary'), key='slate_var2') | |
group_var2 = st.radio("Which position group would you like to view?", ('All', 'Pitchers', 'Hitters'), key='group_var2') | |
team_var2 = st.selectbox("Which team would you like to view?", ['All', 'Specific'], key='team_var2') | |
if team_var2 == 'Specific': | |
team_select2 = st.multiselect("Select your team(s)", roo_data['Team'].unique(), key='team_select2') | |
else: | |
team_select2 = None | |
pos_var2 = st.selectbox("Which position(s) would you like to view?", ['All', 'Specific'], key='pos_var2') | |
if pos_var2 == 'Specific': | |
pos_select2 = st.multiselect("Select your position(s)", roo_data['Position'].unique(), key='pos_select2') | |
else: | |
pos_select2 = None | |
if slate_type_var2 == 'Regular': | |
if site_var == 'Draftkings': | |
player_roo_raw = dk_roo.copy() | |
if group_var2 == 'All': | |
pass | |
elif group_var2 == 'Pitchers': | |
player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Pitchers'] | |
elif group_var2 == 'Hitters': | |
player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Hitters'] | |
elif site_var == 'Fanduel': | |
player_roo_raw = fd_roo.copy() | |
if group_var2 == 'All': | |
pass | |
elif group_var2 == 'Pitchers': | |
player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Pitchers'] | |
elif group_var2 == 'Hitters': | |
player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Hitters'] | |
if slate_var2 == 'Main': | |
player_roo_raw = player_roo_raw[player_roo_raw['Slate'] == 'main_slate'] | |
elif slate_var2 == 'Secondary': | |
player_roo_raw = player_roo_raw[player_roo_raw['Slate'] == 'secondary_slate'] | |
elif slate_var2 == 'Auxiliary': | |
player_roo_raw = player_roo_raw[player_roo_raw['Slate'] == 'turbo_slate'] | |
elif slate_type_var2 == 'Showdown': | |
player_roo_raw = sd_roo_data.copy() | |
if site_var == 'Draftkings': | |
player_roo_raw['Site'] = 'Draftkings' | |
elif site_var == 'Fanduel': | |
player_roo_raw['Site'] = 'Fanduel' | |
if team_select2: | |
player_roo_raw = player_roo_raw[player_roo_raw['Team'].isin(team_select2)] | |
if pos_select2: | |
position_mask = player_roo_raw['Position'].apply(lambda x: any(pos in x for pos in pos_select2)) | |
player_roo_raw = player_roo_raw[position_mask] | |
player_roo_disp = player_roo_raw | |
if slate_type_var2 == 'Regular': | |
player_roo_disp = player_roo_disp.drop(columns=['Site', 'Slate', 'pos_group', 'timestamp', 'player_ID']) | |
elif slate_type_var2 == 'Showdown': | |
player_roo_disp = player_roo_disp.drop(columns=['site', 'slate', 'version', 'timestamp']) | |
if view_var == "Simple": | |
try: | |
player_roo_disp = player_roo_disp[['Player', 'Position', 'Salary', 'Median', 'Ceiling', 'Own%']] | |
st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True, hide_index=True) | |
except: | |
st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True, hide_index=True) | |
elif view_var == "Advanced": | |
try: | |
st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True, hide_index=True) | |
except: | |
st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True, hide_index=True) | |
with tab3: | |
st.header("Optimals") | |
with st.expander("Info and Filters"): | |
with st.container(): | |
slate_type_var3 = st.radio("Which slate type are you loading?", ('Regular', 'Showdown'), key='slate_type_var3') | |
slate_var3 = st.radio("Which slate data are you loading?", ('Main', 'Secondary', 'Auxiliary'), key='slate_var3') | |
if slate_type_var3 == 'Regular': | |
if site_var == 'Draftkings': | |
dk_lineups = init_DK_lineups(slate_type_var3, slate_var3) | |
elif site_var == 'Fanduel': | |
fd_lineups = init_FD_lineups(slate_type_var3, slate_var3) | |
elif slate_type_var3 == 'Showdown': | |
if site_var == 'Draftkings': | |
dk_lineups = init_DK_lineups(slate_type_var3, slate_var3) | |
elif site_var == 'Fanduel': | |
fd_lineups = init_FD_lineups(slate_type_var3, slate_var3) | |
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1) | |
if slate_type_var3 == 'Regular': | |
raw_baselines = roo_data | |
elif slate_type_var3 == 'Showdown': | |
raw_baselines = sd_roo_data | |
if site_var == 'Draftkings': | |
if slate_type_var3 == 'Regular': | |
ROO_slice = raw_baselines[raw_baselines['Site'] == 'Draftkings'] | |
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary'])) | |
elif slate_type_var3 == 'Showdown': | |
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary'])) | |
# Get the minimum and maximum ownership values from dk_lineups | |
min_own = np.min(dk_lineups[:,8]) | |
max_own = np.max(dk_lineups[:,8]) | |
column_names = dk_columns | |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1') | |
if player_var1 == 'Specific Players': | |
player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique()) | |
elif player_var1 == 'Full Slate': | |
player_var2 = raw_baselines.Player.values.tolist() | |
elif site_var == 'Fanduel': | |
raw_baselines = hold_display | |
if slate_type_var3 == 'Regular': | |
ROO_slice = raw_baselines[raw_baselines['Site'] == 'Fanduel'] | |
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary'])) | |
elif slate_type_var3 == 'Showdown': | |
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary'])) | |
min_own = np.min(fd_lineups[:,8]) | |
max_own = np.max(fd_lineups[:,8]) | |
column_names = fd_columns | |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1') | |
if player_var1 == 'Specific Players': | |
player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique()) | |
elif player_var1 == 'Full Slate': | |
player_var2 = raw_baselines.Player.values.tolist() | |
if st.button("Prepare data export", key='data_export'): | |
data_export = st.session_state.working_seed.copy() | |
# if site_var == 'Draftkings': | |
# for col_idx in range(6): | |
# data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]]) | |
# elif site_var == 'Fanduel': | |
# for col_idx in range(6): | |
# data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]]) | |
st.download_button( | |
label="Export optimals set", | |
data=convert_df(data_export), | |
file_name='MLB_optimals_export.csv', | |
mime='text/csv', | |
) | |
if site_var == 'Draftkings': | |
if 'working_seed' in st.session_state: | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
st.session_state.working_seed = dk_lineups.copy() | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif 'working_seed' not in st.session_state: | |
st.session_state.working_seed = dk_lineups.copy() | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
st.session_state.working_seed = dk_lineups.copy() | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif site_var == 'Fanduel': | |
if 'working_seed' in st.session_state: | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
st.session_state.working_seed = fd_lineups.copy() | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif 'working_seed' not in st.session_state: | |
st.session_state.working_seed = fd_lineups.copy() | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
st.session_state.working_seed = fd_lineups.copy() | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
export_file = st.session_state.data_export_display.copy() | |
# if site_var == 'Draftkings': | |
# for col_idx in range(6): | |
# export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict) | |
# elif site_var == 'Fanduel': | |
# for col_idx in range(6): | |
# export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict) | |
with st.container(): | |
if st.button("Reset Optimals", key='reset3'): | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
if site_var == 'Draftkings': | |
st.session_state.working_seed = dk_lineups.copy() | |
elif site_var == 'Fanduel': | |
st.session_state.working_seed = fd_lineups.copy() | |
if 'data_export_display' in st.session_state: | |
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True) | |
st.download_button( | |
label="Export display optimals", | |
data=convert_df(export_file), | |
file_name='MLB_display_optimals.csv', | |
mime='text/csv', | |
) | |
with st.container(): | |
if 'working_seed' in st.session_state: | |
# Create a new dataframe with summary statistics | |
if site_var == 'Draftkings': | |
summary_df = pd.DataFrame({ | |
'Metric': ['Min', 'Average', 'Max', 'STDdev'], | |
'Salary': [ | |
np.min(st.session_state.working_seed[:,10]), | |
np.mean(st.session_state.working_seed[:,10]), | |
np.max(st.session_state.working_seed[:,10]), | |
np.std(st.session_state.working_seed[:,10]) | |
], | |
'Proj': [ | |
np.min(st.session_state.working_seed[:,11]), | |
np.mean(st.session_state.working_seed[:,11]), | |
np.max(st.session_state.working_seed[:,11]), | |
np.std(st.session_state.working_seed[:,11]) | |
], | |
'Own': [ | |
np.min(st.session_state.working_seed[:,16]), | |
np.mean(st.session_state.working_seed[:,16]), | |
np.max(st.session_state.working_seed[:,16]), | |
np.std(st.session_state.working_seed[:,16]) | |
] | |
}) | |
elif site_var == 'Fanduel': | |
summary_df = pd.DataFrame({ | |
'Metric': ['Min', 'Average', 'Max', 'STDdev'], | |
'Salary': [ | |
np.min(st.session_state.working_seed[:,9]), | |
np.mean(st.session_state.working_seed[:,9]), | |
np.max(st.session_state.working_seed[:,9]), | |
np.std(st.session_state.working_seed[:,9]) | |
], | |
'Proj': [ | |
np.min(st.session_state.working_seed[:,10]), | |
np.mean(st.session_state.working_seed[:,10]), | |
np.max(st.session_state.working_seed[:,10]), | |
np.std(st.session_state.working_seed[:,10]) | |
], | |
'Own': [ | |
np.min(st.session_state.working_seed[:,15]), | |
np.mean(st.session_state.working_seed[:,15]), | |
np.max(st.session_state.working_seed[:,15]), | |
np.std(st.session_state.working_seed[:,15]) | |
] | |
}) | |
# Set the index of the summary dataframe as the "Metric" column | |
summary_df = summary_df.set_index('Metric') | |
# Display the summary dataframe | |
st.subheader("Optimal Statistics") | |
st.dataframe(summary_df.style.format({ | |
'Salary': '{:.2f}', | |
'Proj': '{:.2f}', | |
'Own': '{:.2f}' | |
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True) | |
with st.container(): | |
tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"]) | |
with tab1: | |
if 'data_export_display' in st.session_state: | |
if site_var == 'Draftkings': | |
player_columns = st.session_state.data_export_display.iloc[:, :10] | |
elif site_var == 'Fanduel': | |
player_columns = st.session_state.data_export_display.iloc[:, :9] | |
# Flatten the DataFrame and count unique values | |
value_counts = player_columns.values.flatten().tolist() | |
value_counts = pd.Series(value_counts).value_counts() | |
percentages = (value_counts / lineup_num_var * 100).round(2) | |
# Create a DataFrame with the results | |
summary_df = pd.DataFrame({ | |
'Player': value_counts.index, | |
'Frequency': value_counts.values, | |
'Percentage': percentages.values | |
}) | |
# Sort by frequency in descending order | |
summary_df['Salary'] = summary_df['Player'].map(player_salaries) | |
summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']] | |
summary_df = summary_df.sort_values('Frequency', ascending=False) | |
summary_df = summary_df.set_index('Player') | |
# Display the table | |
st.write("Player Frequency Table:") | |
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True) | |
st.download_button( | |
label="Export player frequency", | |
data=convert_df_to_csv(summary_df), | |
file_name='MLB_player_frequency.csv', | |
mime='text/csv', | |
) | |
with tab2: | |
if 'working_seed' in st.session_state: | |
if site_var == 'Draftkings': | |
player_columns = st.session_state.working_seed[:, :10] | |
elif site_var == 'Fanduel': | |
player_columns = st.session_state.working_seed[:, :9] | |
# Flatten the DataFrame and count unique values | |
value_counts = player_columns.flatten().tolist() | |
value_counts = pd.Series(value_counts).value_counts() | |
percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2) | |
# Create a DataFrame with the results | |
summary_df = pd.DataFrame({ | |
'Player': value_counts.index, | |
'Frequency': value_counts.values, | |
'Percentage': percentages.values | |
}) | |
# Sort by frequency in descending order | |
summary_df['Salary'] = summary_df['Player'].map(player_salaries) | |
summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']] | |
summary_df = summary_df.sort_values('Frequency', ascending=False) | |
summary_df = summary_df.set_index('Player') | |
# Display the table | |
st.write("Seed Frame Frequency Table:") | |
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True) | |
st.download_button( | |
label="Export seed frame frequency", | |
data=convert_df_to_csv(summary_df), | |
file_name='MLB_seed_frame_frequency.csv', | |
mime='text/csv', | |
) |