James McCool commited on
Commit
311d2c7
·
1 Parent(s): 3d56cc9

Update app.py to modify column names for DraftKings and FanDuel lineups, enhancing data structure for player positions and improving data retrieval in init_DK_lineups and init_FD_lineups functions.

Browse files
Files changed (1) hide show
  1. app.py +102 -31
app.py CHANGED
@@ -23,8 +23,8 @@ game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%
23
  player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
24
  '4x%': '{:.2%}'}
25
 
26
- dk_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']
27
- fd_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']
28
 
29
  st.markdown("""
30
  <style>
@@ -88,69 +88,140 @@ def init_baselines():
88
 
89
  @st.cache_data(ttl = 60)
90
  def init_DK_lineups(type_var, slate_var):
91
-
92
- if type_var == 'Regular':
93
- if slate_var == 'Main':
94
- collection = db['DK_MLB_seed_frame']
95
- cursor = collection.find().limit(10000)
96
- elif slate_var == 'Secondary':
97
- collection = db['DK_MLB_Secondary_seed_frame']
98
- cursor = collection.find().limit(10000)
99
- elif slate_var == 'Auxiliary':
100
- collection = db['DK_MLB_Turbo_seed_frame']
101
- cursor = collection.find().limit(10000)
 
 
 
 
 
 
 
 
 
 
102
 
 
 
 
103
  raw_display = pd.DataFrame(list(cursor))
104
- raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Own']]
 
 
 
 
 
 
 
 
 
 
 
105
 
106
- elif type_var == 'Showdown':
107
- if slate_var == 'Main':
108
- collection = db2['DK_MLB_SD1_seed_frame']
109
- cursor = collection.find().limit(10000)
110
- elif slate_var == 'Secondary':
111
- collection = db2['DK_MLB_SD2_seed_frame']
112
- cursor = collection.find().limit(10000)
113
- elif slate_var == 'Auxiliary':
114
- collection = db2['DK_MLB_SD3_seed_frame']
115
- cursor = collection.find().limit(10000)
116
 
117
  raw_display = pd.DataFrame(list(cursor))
118
  raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']]
119
-
120
- DK_seed = raw_display.to_numpy()
 
 
 
 
 
 
 
 
 
 
 
 
121
 
122
- return DK_seed
123
 
124
  @st.cache_data(ttl = 60)
125
  def init_FD_lineups(type_var,slate_var):
126
 
127
  if type_var == 'Regular':
128
  if slate_var == 'Main':
 
 
 
 
 
129
  collection = db['FD_MLB_seed_frame']
130
  cursor = collection.find().limit(10000)
 
 
 
 
 
 
131
  elif slate_var == 'Secondary':
 
 
 
 
 
132
  collection = db['FD_MLB_Secondary_seed_frame']
133
  cursor = collection.find().limit(10000)
 
 
 
 
 
 
134
  elif slate_var == 'Auxiliary':
 
 
 
 
 
135
  collection = db['FD_MLB_Turbo_seed_frame']
136
  cursor = collection.find().limit(10000)
137
 
138
- raw_display = pd.DataFrame(list(cursor))
139
- raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Own']]
 
 
 
140
 
141
  elif type_var == 'Showdown':
142
  if slate_var == 'Main':
143
  collection = db2['FD_MLB_SD1_seed_frame']
144
  cursor = collection.find().limit(10000)
 
 
 
145
  elif slate_var == 'Secondary':
146
  collection = db2['FD_MLB_SD2_seed_frame']
147
  cursor = collection.find().limit(10000)
 
 
 
148
  elif slate_var == 'Auxiliary':
149
  collection = db2['FD_MLB_SD3_seed_frame']
150
  cursor = collection.find().limit(10000)
151
 
152
- raw_display = pd.DataFrame(list(cursor))
153
- raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']]
154
 
155
  FD_seed = raw_display.to_numpy()
156
 
 
23
  player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
24
  '4x%': '{:.2%}'}
25
 
26
+ dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
27
+ fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
28
 
29
  st.markdown("""
30
  <style>
 
88
 
89
  @st.cache_data(ttl = 60)
90
  def init_DK_lineups(type_var, slate_var):
91
+
92
+ if type_var == 'Regular':
93
+ if slate_var == 'Main':
94
+ collection = db['DK_MLB_name_map']
95
+ cursor = collection.find()
96
+ raw_data = pd.DataFrame(list(cursor))
97
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
98
+
99
+ collection = db['DK_MLB_seed_frame']
100
+ cursor = collection.find().limit(10000)
101
+
102
+ raw_display = pd.DataFrame(list(cursor))
103
+ raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
104
+ dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
105
+ # Map names
106
+ raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
107
+ elif slate_var == 'Secondary':
108
+ collection = db['DK_MLB_Secondary_name_map']
109
+ cursor = collection.find()
110
+ raw_data = pd.DataFrame(list(cursor))
111
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
112
 
113
+ collection = db['DK_MLB_Secondary_seed_frame']
114
+ cursor = collection.find().limit(10000)
115
+
116
  raw_display = pd.DataFrame(list(cursor))
117
+ raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
118
+ dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
119
+ # Map names
120
+ raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
121
+ elif slate_var == 'Auxiliary':
122
+ collection = db['DK_MLB_Turbo_name_map']
123
+ cursor = collection.find()
124
+ raw_data = pd.DataFrame(list(cursor))
125
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
126
+
127
+ collection = db['DK_MLB_Turbo_seed_frame']
128
+ cursor = collection.find().limit(10000)
129
 
130
+ raw_display = pd.DataFrame(list(cursor))
131
+ raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
132
+ dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
133
+ # Map names
134
+ raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
135
+ elif type_var == 'Showdown':
136
+ if slate_var == 'Main':
137
+ collection = db2['DK_MLB_SD1_seed_frame']
138
+ cursor = collection.find().limit(10000)
 
139
 
140
  raw_display = pd.DataFrame(list(cursor))
141
  raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']]
142
+ elif slate_var == 'Secondary':
143
+ collection = db2['DK_MLB_SD2_seed_frame']
144
+ cursor = collection.find().limit(10000)
145
+
146
+ raw_display = pd.DataFrame(list(cursor))
147
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']]
148
+ elif slate_var == 'Auxiliary':
149
+ collection = db2['DK_MLB_SD3_seed_frame']
150
+ cursor = collection.find().limit(10000)
151
+
152
+ raw_display = pd.DataFrame(list(cursor))
153
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']]
154
+
155
+ DK_seed = raw_display.to_numpy()
156
 
157
+ return DK_seed
158
 
159
  @st.cache_data(ttl = 60)
160
  def init_FD_lineups(type_var,slate_var):
161
 
162
  if type_var == 'Regular':
163
  if slate_var == 'Main':
164
+ collection = db['FD_MLB_name_map']
165
+ cursor = collection.find()
166
+ raw_data = pd.DataFrame(list(cursor))
167
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
168
+
169
  collection = db['FD_MLB_seed_frame']
170
  cursor = collection.find().limit(10000)
171
+
172
+ raw_display = pd.DataFrame(list(cursor))
173
+ raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Own']]
174
+ dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
175
+ # Map names
176
+ raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
177
  elif slate_var == 'Secondary':
178
+ collection = db['FD_MLB_Secondary_name_map']
179
+ cursor = collection.find()
180
+ raw_data = pd.DataFrame(list(cursor))
181
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
182
+
183
  collection = db['FD_MLB_Secondary_seed_frame']
184
  cursor = collection.find().limit(10000)
185
+
186
+ raw_display = pd.DataFrame(list(cursor))
187
+ raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Own']]
188
+ dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
189
+ # Map names
190
+ raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
191
  elif slate_var == 'Auxiliary':
192
+ collection = db['FD_MLB_Turbo_name_map']
193
+ cursor = collection.find()
194
+ raw_data = pd.DataFrame(list(cursor))
195
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
196
+
197
  collection = db['FD_MLB_Turbo_seed_frame']
198
  cursor = collection.find().limit(10000)
199
 
200
+ raw_display = pd.DataFrame(list(cursor))
201
+ raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Own']]
202
+ dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
203
+ # Map names
204
+ raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
205
 
206
  elif type_var == 'Showdown':
207
  if slate_var == 'Main':
208
  collection = db2['FD_MLB_SD1_seed_frame']
209
  cursor = collection.find().limit(10000)
210
+
211
+ raw_display = pd.DataFrame(list(cursor))
212
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']]
213
  elif slate_var == 'Secondary':
214
  collection = db2['FD_MLB_SD2_seed_frame']
215
  cursor = collection.find().limit(10000)
216
+
217
+ raw_display = pd.DataFrame(list(cursor))
218
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']]
219
  elif slate_var == 'Auxiliary':
220
  collection = db2['FD_MLB_SD3_seed_frame']
221
  cursor = collection.find().limit(10000)
222
 
223
+ raw_display = pd.DataFrame(list(cursor))
224
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']]
225
 
226
  FD_seed = raw_display.to_numpy()
227