Spaces:
Running
Running
James McCool
commited on
Commit
·
311d2c7
1
Parent(s):
3d56cc9
Update app.py to modify column names for DraftKings and FanDuel lineups, enhancing data structure for player positions and improving data retrieval in init_DK_lineups and init_FD_lineups functions.
Browse files
app.py
CHANGED
@@ -23,8 +23,8 @@ game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%
|
|
23 |
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
|
24 |
'4x%': '{:.2%}'}
|
25 |
|
26 |
-
dk_columns = ['
|
27 |
-
fd_columns = ['
|
28 |
|
29 |
st.markdown("""
|
30 |
<style>
|
@@ -88,69 +88,140 @@ def init_baselines():
|
|
88 |
|
89 |
@st.cache_data(ttl = 60)
|
90 |
def init_DK_lineups(type_var, slate_var):
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
|
|
|
|
|
|
103 |
raw_display = pd.DataFrame(list(cursor))
|
104 |
-
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Own']]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
cursor = collection.find().limit(10000)
|
116 |
|
117 |
raw_display = pd.DataFrame(list(cursor))
|
118 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']]
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
|
123 |
|
124 |
@st.cache_data(ttl = 60)
|
125 |
def init_FD_lineups(type_var,slate_var):
|
126 |
|
127 |
if type_var == 'Regular':
|
128 |
if slate_var == 'Main':
|
|
|
|
|
|
|
|
|
|
|
129 |
collection = db['FD_MLB_seed_frame']
|
130 |
cursor = collection.find().limit(10000)
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
elif slate_var == 'Secondary':
|
|
|
|
|
|
|
|
|
|
|
132 |
collection = db['FD_MLB_Secondary_seed_frame']
|
133 |
cursor = collection.find().limit(10000)
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
elif slate_var == 'Auxiliary':
|
|
|
|
|
|
|
|
|
|
|
135 |
collection = db['FD_MLB_Turbo_seed_frame']
|
136 |
cursor = collection.find().limit(10000)
|
137 |
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
140 |
|
141 |
elif type_var == 'Showdown':
|
142 |
if slate_var == 'Main':
|
143 |
collection = db2['FD_MLB_SD1_seed_frame']
|
144 |
cursor = collection.find().limit(10000)
|
|
|
|
|
|
|
145 |
elif slate_var == 'Secondary':
|
146 |
collection = db2['FD_MLB_SD2_seed_frame']
|
147 |
cursor = collection.find().limit(10000)
|
|
|
|
|
|
|
148 |
elif slate_var == 'Auxiliary':
|
149 |
collection = db2['FD_MLB_SD3_seed_frame']
|
150 |
cursor = collection.find().limit(10000)
|
151 |
|
152 |
-
|
153 |
-
|
154 |
|
155 |
FD_seed = raw_display.to_numpy()
|
156 |
|
|
|
23 |
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
|
24 |
'4x%': '{:.2%}'}
|
25 |
|
26 |
+
dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
27 |
+
fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
28 |
|
29 |
st.markdown("""
|
30 |
<style>
|
|
|
88 |
|
89 |
@st.cache_data(ttl = 60)
|
90 |
def init_DK_lineups(type_var, slate_var):
|
91 |
+
|
92 |
+
if type_var == 'Regular':
|
93 |
+
if slate_var == 'Main':
|
94 |
+
collection = db['DK_MLB_name_map']
|
95 |
+
cursor = collection.find()
|
96 |
+
raw_data = pd.DataFrame(list(cursor))
|
97 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
98 |
+
|
99 |
+
collection = db['DK_MLB_seed_frame']
|
100 |
+
cursor = collection.find().limit(10000)
|
101 |
+
|
102 |
+
raw_display = pd.DataFrame(list(cursor))
|
103 |
+
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
104 |
+
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
105 |
+
# Map names
|
106 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
107 |
+
elif slate_var == 'Secondary':
|
108 |
+
collection = db['DK_MLB_Secondary_name_map']
|
109 |
+
cursor = collection.find()
|
110 |
+
raw_data = pd.DataFrame(list(cursor))
|
111 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
112 |
|
113 |
+
collection = db['DK_MLB_Secondary_seed_frame']
|
114 |
+
cursor = collection.find().limit(10000)
|
115 |
+
|
116 |
raw_display = pd.DataFrame(list(cursor))
|
117 |
+
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
118 |
+
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
119 |
+
# Map names
|
120 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
121 |
+
elif slate_var == 'Auxiliary':
|
122 |
+
collection = db['DK_MLB_Turbo_name_map']
|
123 |
+
cursor = collection.find()
|
124 |
+
raw_data = pd.DataFrame(list(cursor))
|
125 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
126 |
+
|
127 |
+
collection = db['DK_MLB_Turbo_seed_frame']
|
128 |
+
cursor = collection.find().limit(10000)
|
129 |
|
130 |
+
raw_display = pd.DataFrame(list(cursor))
|
131 |
+
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
132 |
+
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
133 |
+
# Map names
|
134 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
135 |
+
elif type_var == 'Showdown':
|
136 |
+
if slate_var == 'Main':
|
137 |
+
collection = db2['DK_MLB_SD1_seed_frame']
|
138 |
+
cursor = collection.find().limit(10000)
|
|
|
139 |
|
140 |
raw_display = pd.DataFrame(list(cursor))
|
141 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']]
|
142 |
+
elif slate_var == 'Secondary':
|
143 |
+
collection = db2['DK_MLB_SD2_seed_frame']
|
144 |
+
cursor = collection.find().limit(10000)
|
145 |
+
|
146 |
+
raw_display = pd.DataFrame(list(cursor))
|
147 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']]
|
148 |
+
elif slate_var == 'Auxiliary':
|
149 |
+
collection = db2['DK_MLB_SD3_seed_frame']
|
150 |
+
cursor = collection.find().limit(10000)
|
151 |
+
|
152 |
+
raw_display = pd.DataFrame(list(cursor))
|
153 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']]
|
154 |
+
|
155 |
+
DK_seed = raw_display.to_numpy()
|
156 |
|
157 |
+
return DK_seed
|
158 |
|
159 |
@st.cache_data(ttl = 60)
|
160 |
def init_FD_lineups(type_var,slate_var):
|
161 |
|
162 |
if type_var == 'Regular':
|
163 |
if slate_var == 'Main':
|
164 |
+
collection = db['FD_MLB_name_map']
|
165 |
+
cursor = collection.find()
|
166 |
+
raw_data = pd.DataFrame(list(cursor))
|
167 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
168 |
+
|
169 |
collection = db['FD_MLB_seed_frame']
|
170 |
cursor = collection.find().limit(10000)
|
171 |
+
|
172 |
+
raw_display = pd.DataFrame(list(cursor))
|
173 |
+
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Own']]
|
174 |
+
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
175 |
+
# Map names
|
176 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
177 |
elif slate_var == 'Secondary':
|
178 |
+
collection = db['FD_MLB_Secondary_name_map']
|
179 |
+
cursor = collection.find()
|
180 |
+
raw_data = pd.DataFrame(list(cursor))
|
181 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
182 |
+
|
183 |
collection = db['FD_MLB_Secondary_seed_frame']
|
184 |
cursor = collection.find().limit(10000)
|
185 |
+
|
186 |
+
raw_display = pd.DataFrame(list(cursor))
|
187 |
+
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Own']]
|
188 |
+
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
189 |
+
# Map names
|
190 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
191 |
elif slate_var == 'Auxiliary':
|
192 |
+
collection = db['FD_MLB_Turbo_name_map']
|
193 |
+
cursor = collection.find()
|
194 |
+
raw_data = pd.DataFrame(list(cursor))
|
195 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
196 |
+
|
197 |
collection = db['FD_MLB_Turbo_seed_frame']
|
198 |
cursor = collection.find().limit(10000)
|
199 |
|
200 |
+
raw_display = pd.DataFrame(list(cursor))
|
201 |
+
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Own']]
|
202 |
+
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
203 |
+
# Map names
|
204 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
205 |
|
206 |
elif type_var == 'Showdown':
|
207 |
if slate_var == 'Main':
|
208 |
collection = db2['FD_MLB_SD1_seed_frame']
|
209 |
cursor = collection.find().limit(10000)
|
210 |
+
|
211 |
+
raw_display = pd.DataFrame(list(cursor))
|
212 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']]
|
213 |
elif slate_var == 'Secondary':
|
214 |
collection = db2['FD_MLB_SD2_seed_frame']
|
215 |
cursor = collection.find().limit(10000)
|
216 |
+
|
217 |
+
raw_display = pd.DataFrame(list(cursor))
|
218 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']]
|
219 |
elif slate_var == 'Auxiliary':
|
220 |
collection = db2['FD_MLB_SD3_seed_frame']
|
221 |
cursor = collection.find().limit(10000)
|
222 |
|
223 |
+
raw_display = pd.DataFrame(list(cursor))
|
224 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']]
|
225 |
|
226 |
FD_seed = raw_display.to_numpy()
|
227 |
|