James McCool commited on
Commit
4f7c6f3
·
1 Parent(s): 1d52481

Update app.py to include 'FLEX5' in player selection for various slate types. This change enhances the data structure for player lineups, ensuring compatibility with expanded player options in the application.

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -296,19 +296,19 @@ def init_FD_lineups(type_var,slate_var):
296
  cursor = collection.find().limit(10000)
297
 
298
  raw_display = pd.DataFrame(list(cursor))
299
- raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
300
  elif slate_var == 'Secondary':
301
  collection = db['FD_MLB_SD2_seed_frame']
302
  cursor = collection.find().limit(10000)
303
 
304
  raw_display = pd.DataFrame(list(cursor))
305
- raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
306
  elif slate_var == 'Auxiliary':
307
  collection = db['FD_MLB_SD3_seed_frame']
308
  cursor = collection.find().limit(10000)
309
 
310
  raw_display = pd.DataFrame(list(cursor))
311
- raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
312
 
313
  FD_seed = raw_display.to_numpy()
314
 
@@ -676,7 +676,7 @@ with tab3:
676
  if slate_type_var3 == 'Regular':
677
  map_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
678
  elif slate_type_var3 == 'Showdown':
679
- map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4']
680
  for col_idx in map_columns:
681
  export_file[col_idx] = export_file[col_idx].map(fd_id_map)
682
 
@@ -776,7 +776,7 @@ with tab3:
776
  if slate_type_var3 == 'Regular':
777
  player_columns = st.session_state.data_export_display.iloc[:, :9]
778
  elif slate_type_var3 == 'Showdown':
779
- player_columns = st.session_state.data_export_display.iloc[:, :5]
780
 
781
  # Flatten the DataFrame and count unique values
782
  value_counts = player_columns.values.flatten().tolist()
@@ -818,7 +818,7 @@ with tab3:
818
  if slate_type_var3 == 'Regular':
819
  player_columns = st.session_state.working_seed[:, :9]
820
  elif slate_type_var3 == 'Showdown':
821
- player_columns = st.session_state.working_seed[:, :6]
822
 
823
  # Flatten the DataFrame and count unique values
824
  value_counts = player_columns.flatten().tolist()
 
296
  cursor = collection.find().limit(10000)
297
 
298
  raw_display = pd.DataFrame(list(cursor))
299
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
300
  elif slate_var == 'Secondary':
301
  collection = db['FD_MLB_SD2_seed_frame']
302
  cursor = collection.find().limit(10000)
303
 
304
  raw_display = pd.DataFrame(list(cursor))
305
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
306
  elif slate_var == 'Auxiliary':
307
  collection = db['FD_MLB_SD3_seed_frame']
308
  cursor = collection.find().limit(10000)
309
 
310
  raw_display = pd.DataFrame(list(cursor))
311
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
312
 
313
  FD_seed = raw_display.to_numpy()
314
 
 
676
  if slate_type_var3 == 'Regular':
677
  map_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
678
  elif slate_type_var3 == 'Showdown':
679
+ map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
680
  for col_idx in map_columns:
681
  export_file[col_idx] = export_file[col_idx].map(fd_id_map)
682
 
 
776
  if slate_type_var3 == 'Regular':
777
  player_columns = st.session_state.data_export_display.iloc[:, :9]
778
  elif slate_type_var3 == 'Showdown':
779
+ player_columns = st.session_state.data_export_display.iloc[:, :6]
780
 
781
  # Flatten the DataFrame and count unique values
782
  value_counts = player_columns.values.flatten().tolist()
 
818
  if slate_type_var3 == 'Regular':
819
  player_columns = st.session_state.working_seed[:, :9]
820
  elif slate_type_var3 == 'Showdown':
821
+ player_columns = st.session_state.working_seed[:, :7]
822
 
823
  # Flatten the DataFrame and count unique values
824
  value_counts = player_columns.flatten().tolist()