James McCool commited on
Commit
70cfb96
·
1 Parent(s): 44fbcd2

Update app.py to include new column mappings for DraftKings and FanDuel showdown formats, enhancing data display and ensuring accurate representation of team and player metrics in lineups.

Browse files
Files changed (1) hide show
  1. app.py +16 -9
app.py CHANGED
@@ -25,6 +25,8 @@ player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_fi
25
 
26
  dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
27
  fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
 
 
28
 
29
  st.markdown("""
30
  <style>
@@ -145,19 +147,19 @@ def init_DK_lineups(type_var, slate_var):
145
  cursor = collection.find().limit(10000)
146
 
147
  raw_display = pd.DataFrame(list(cursor))
148
- raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']]
149
  elif slate_var == 'Secondary':
150
  collection = db2['DK_MLB_SD2_seed_frame']
151
  cursor = collection.find().limit(10000)
152
 
153
  raw_display = pd.DataFrame(list(cursor))
154
- raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']]
155
  elif slate_var == 'Auxiliary':
156
  collection = db2['DK_MLB_SD3_seed_frame']
157
  cursor = collection.find().limit(10000)
158
 
159
  raw_display = pd.DataFrame(list(cursor))
160
- raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']]
161
 
162
  DK_seed = raw_display.to_numpy()
163
 
@@ -216,19 +218,19 @@ def init_FD_lineups(type_var,slate_var):
216
  cursor = collection.find().limit(10000)
217
 
218
  raw_display = pd.DataFrame(list(cursor))
219
- raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']]
220
  elif slate_var == 'Secondary':
221
  collection = db2['FD_MLB_SD2_seed_frame']
222
  cursor = collection.find().limit(10000)
223
 
224
  raw_display = pd.DataFrame(list(cursor))
225
- raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']]
226
  elif slate_var == 'Auxiliary':
227
  collection = db2['FD_MLB_SD3_seed_frame']
228
  cursor = collection.find().limit(10000)
229
 
230
  raw_display = pd.DataFrame(list(cursor))
231
- raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']]
232
 
233
  FD_seed = raw_display.to_numpy()
234
 
@@ -406,7 +408,7 @@ with tab3:
406
  lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
407
 
408
  if slate_type_var3 == 'Regular':
409
- raw_baselines = roo_data
410
  elif slate_type_var3 == 'Showdown':
411
  raw_baselines = sd_roo_data
412
 
@@ -414,12 +416,14 @@ with tab3:
414
  if slate_type_var3 == 'Regular':
415
  ROO_slice = raw_baselines[raw_baselines['Site'] == 'Draftkings']
416
  player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
 
417
  elif slate_type_var3 == 'Showdown':
418
  player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
 
419
  # Get the minimum and maximum ownership values from dk_lineups
420
  min_own = np.min(dk_lineups[:,8])
421
  max_own = np.max(dk_lineups[:,8])
422
- column_names = dk_columns
423
 
424
  player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
425
  if player_var1 == 'Specific Players':
@@ -432,11 +436,14 @@ with tab3:
432
  if slate_type_var3 == 'Regular':
433
  ROO_slice = raw_baselines[raw_baselines['Site'] == 'Fanduel']
434
  player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
 
435
  elif slate_type_var3 == 'Showdown':
436
  player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
 
 
437
  min_own = np.min(fd_lineups[:,8])
438
  max_own = np.max(fd_lineups[:,8])
439
- column_names = fd_columns
440
 
441
  player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
442
  if player_var1 == 'Specific Players':
 
25
 
26
  dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
27
  fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
28
+ dk_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
29
+ fd_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
30
 
31
  st.markdown("""
32
  <style>
 
147
  cursor = collection.find().limit(10000)
148
 
149
  raw_display = pd.DataFrame(list(cursor))
150
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
151
  elif slate_var == 'Secondary':
152
  collection = db2['DK_MLB_SD2_seed_frame']
153
  cursor = collection.find().limit(10000)
154
 
155
  raw_display = pd.DataFrame(list(cursor))
156
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
157
  elif slate_var == 'Auxiliary':
158
  collection = db2['DK_MLB_SD3_seed_frame']
159
  cursor = collection.find().limit(10000)
160
 
161
  raw_display = pd.DataFrame(list(cursor))
162
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
163
 
164
  DK_seed = raw_display.to_numpy()
165
 
 
218
  cursor = collection.find().limit(10000)
219
 
220
  raw_display = pd.DataFrame(list(cursor))
221
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
222
  elif slate_var == 'Secondary':
223
  collection = db2['FD_MLB_SD2_seed_frame']
224
  cursor = collection.find().limit(10000)
225
 
226
  raw_display = pd.DataFrame(list(cursor))
227
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
228
  elif slate_var == 'Auxiliary':
229
  collection = db2['FD_MLB_SD3_seed_frame']
230
  cursor = collection.find().limit(10000)
231
 
232
  raw_display = pd.DataFrame(list(cursor))
233
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
234
 
235
  FD_seed = raw_display.to_numpy()
236
 
 
408
  lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
409
 
410
  if slate_type_var3 == 'Regular':
411
+ raw_baselines = roo_data
412
  elif slate_type_var3 == 'Showdown':
413
  raw_baselines = sd_roo_data
414
 
 
416
  if slate_type_var3 == 'Regular':
417
  ROO_slice = raw_baselines[raw_baselines['Site'] == 'Draftkings']
418
  player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
419
+ column_names = dk_columns
420
  elif slate_type_var3 == 'Showdown':
421
  player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
422
+ column_names = dk_sd_columns
423
  # Get the minimum and maximum ownership values from dk_lineups
424
  min_own = np.min(dk_lineups[:,8])
425
  max_own = np.max(dk_lineups[:,8])
426
+
427
 
428
  player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
429
  if player_var1 == 'Specific Players':
 
436
  if slate_type_var3 == 'Regular':
437
  ROO_slice = raw_baselines[raw_baselines['Site'] == 'Fanduel']
438
  player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
439
+ column_names = fd_columns
440
  elif slate_type_var3 == 'Showdown':
441
  player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
442
+ column_names = fd_sd_columns
443
+ # Get the minimum and maximum ownership values from dk_lineups
444
  min_own = np.min(fd_lineups[:,8])
445
  max_own = np.max(fd_lineups[:,8])
446
+
447
 
448
  player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
449
  if player_var1 == 'Specific Players':