Spaces:
Running
Running
James McCool
commited on
Commit
·
70cfb96
1
Parent(s):
44fbcd2
Update app.py to include new column mappings for DraftKings and FanDuel showdown formats, enhancing data display and ensuring accurate representation of team and player metrics in lineups.
Browse files
app.py
CHANGED
@@ -25,6 +25,8 @@ player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_fi
|
|
25 |
|
26 |
dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
27 |
fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
|
|
|
|
28 |
|
29 |
st.markdown("""
|
30 |
<style>
|
@@ -145,19 +147,19 @@ def init_DK_lineups(type_var, slate_var):
|
|
145 |
cursor = collection.find().limit(10000)
|
146 |
|
147 |
raw_display = pd.DataFrame(list(cursor))
|
148 |
-
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']]
|
149 |
elif slate_var == 'Secondary':
|
150 |
collection = db2['DK_MLB_SD2_seed_frame']
|
151 |
cursor = collection.find().limit(10000)
|
152 |
|
153 |
raw_display = pd.DataFrame(list(cursor))
|
154 |
-
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']]
|
155 |
elif slate_var == 'Auxiliary':
|
156 |
collection = db2['DK_MLB_SD3_seed_frame']
|
157 |
cursor = collection.find().limit(10000)
|
158 |
|
159 |
raw_display = pd.DataFrame(list(cursor))
|
160 |
-
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Own']]
|
161 |
|
162 |
DK_seed = raw_display.to_numpy()
|
163 |
|
@@ -216,19 +218,19 @@ def init_FD_lineups(type_var,slate_var):
|
|
216 |
cursor = collection.find().limit(10000)
|
217 |
|
218 |
raw_display = pd.DataFrame(list(cursor))
|
219 |
-
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']]
|
220 |
elif slate_var == 'Secondary':
|
221 |
collection = db2['FD_MLB_SD2_seed_frame']
|
222 |
cursor = collection.find().limit(10000)
|
223 |
|
224 |
raw_display = pd.DataFrame(list(cursor))
|
225 |
-
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']]
|
226 |
elif slate_var == 'Auxiliary':
|
227 |
collection = db2['FD_MLB_SD3_seed_frame']
|
228 |
cursor = collection.find().limit(10000)
|
229 |
|
230 |
raw_display = pd.DataFrame(list(cursor))
|
231 |
-
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Own']]
|
232 |
|
233 |
FD_seed = raw_display.to_numpy()
|
234 |
|
@@ -406,7 +408,7 @@ with tab3:
|
|
406 |
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
|
407 |
|
408 |
if slate_type_var3 == 'Regular':
|
409 |
-
|
410 |
elif slate_type_var3 == 'Showdown':
|
411 |
raw_baselines = sd_roo_data
|
412 |
|
@@ -414,12 +416,14 @@ with tab3:
|
|
414 |
if slate_type_var3 == 'Regular':
|
415 |
ROO_slice = raw_baselines[raw_baselines['Site'] == 'Draftkings']
|
416 |
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
|
|
|
417 |
elif slate_type_var3 == 'Showdown':
|
418 |
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
|
|
|
419 |
# Get the minimum and maximum ownership values from dk_lineups
|
420 |
min_own = np.min(dk_lineups[:,8])
|
421 |
max_own = np.max(dk_lineups[:,8])
|
422 |
-
|
423 |
|
424 |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
|
425 |
if player_var1 == 'Specific Players':
|
@@ -432,11 +436,14 @@ with tab3:
|
|
432 |
if slate_type_var3 == 'Regular':
|
433 |
ROO_slice = raw_baselines[raw_baselines['Site'] == 'Fanduel']
|
434 |
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
|
|
|
435 |
elif slate_type_var3 == 'Showdown':
|
436 |
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
|
|
|
|
|
437 |
min_own = np.min(fd_lineups[:,8])
|
438 |
max_own = np.max(fd_lineups[:,8])
|
439 |
-
|
440 |
|
441 |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
|
442 |
if player_var1 == 'Specific Players':
|
|
|
25 |
|
26 |
dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
27 |
fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
28 |
+
dk_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
29 |
+
fd_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
30 |
|
31 |
st.markdown("""
|
32 |
<style>
|
|
|
147 |
cursor = collection.find().limit(10000)
|
148 |
|
149 |
raw_display = pd.DataFrame(list(cursor))
|
150 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
151 |
elif slate_var == 'Secondary':
|
152 |
collection = db2['DK_MLB_SD2_seed_frame']
|
153 |
cursor = collection.find().limit(10000)
|
154 |
|
155 |
raw_display = pd.DataFrame(list(cursor))
|
156 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
157 |
elif slate_var == 'Auxiliary':
|
158 |
collection = db2['DK_MLB_SD3_seed_frame']
|
159 |
cursor = collection.find().limit(10000)
|
160 |
|
161 |
raw_display = pd.DataFrame(list(cursor))
|
162 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
163 |
|
164 |
DK_seed = raw_display.to_numpy()
|
165 |
|
|
|
218 |
cursor = collection.find().limit(10000)
|
219 |
|
220 |
raw_display = pd.DataFrame(list(cursor))
|
221 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
222 |
elif slate_var == 'Secondary':
|
223 |
collection = db2['FD_MLB_SD2_seed_frame']
|
224 |
cursor = collection.find().limit(10000)
|
225 |
|
226 |
raw_display = pd.DataFrame(list(cursor))
|
227 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
228 |
elif slate_var == 'Auxiliary':
|
229 |
collection = db2['FD_MLB_SD3_seed_frame']
|
230 |
cursor = collection.find().limit(10000)
|
231 |
|
232 |
raw_display = pd.DataFrame(list(cursor))
|
233 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
234 |
|
235 |
FD_seed = raw_display.to_numpy()
|
236 |
|
|
|
408 |
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
|
409 |
|
410 |
if slate_type_var3 == 'Regular':
|
411 |
+
raw_baselines = roo_data
|
412 |
elif slate_type_var3 == 'Showdown':
|
413 |
raw_baselines = sd_roo_data
|
414 |
|
|
|
416 |
if slate_type_var3 == 'Regular':
|
417 |
ROO_slice = raw_baselines[raw_baselines['Site'] == 'Draftkings']
|
418 |
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
|
419 |
+
column_names = dk_columns
|
420 |
elif slate_type_var3 == 'Showdown':
|
421 |
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
|
422 |
+
column_names = dk_sd_columns
|
423 |
# Get the minimum and maximum ownership values from dk_lineups
|
424 |
min_own = np.min(dk_lineups[:,8])
|
425 |
max_own = np.max(dk_lineups[:,8])
|
426 |
+
|
427 |
|
428 |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
|
429 |
if player_var1 == 'Specific Players':
|
|
|
436 |
if slate_type_var3 == 'Regular':
|
437 |
ROO_slice = raw_baselines[raw_baselines['Site'] == 'Fanduel']
|
438 |
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
|
439 |
+
column_names = fd_columns
|
440 |
elif slate_type_var3 == 'Showdown':
|
441 |
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
|
442 |
+
column_names = fd_sd_columns
|
443 |
+
# Get the minimum and maximum ownership values from dk_lineups
|
444 |
min_own = np.min(fd_lineups[:,8])
|
445 |
max_own = np.max(fd_lineups[:,8])
|
446 |
+
|
447 |
|
448 |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
|
449 |
if player_var1 == 'Specific Players':
|