Spaces:
Running
Running
James McCool
commited on
Commit
·
ca50776
1
Parent(s):
7f643e6
Refactor player column selection in app.py to dynamically adjust based on slate type for DraftKings and FanDuel, ensuring accurate data representation and enhancing user experience.
Browse files
app.py
CHANGED
@@ -422,7 +422,7 @@ with tab3:
|
|
422 |
column_names = dk_sd_columns
|
423 |
# Get the minimum and maximum ownership values from dk_lineups
|
424 |
min_own = np.min(dk_lineups[:,12])
|
425 |
-
max_own = np.max(dk_lineups[:,
|
426 |
|
427 |
|
428 |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
|
@@ -441,7 +441,7 @@ with tab3:
|
|
441 |
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
|
442 |
column_names = fd_sd_columns
|
443 |
# Get the minimum and maximum ownership values from dk_lineups
|
444 |
-
min_own = np.min(fd_lineups[:,
|
445 |
max_own = np.max(fd_lineups[:,11])
|
446 |
|
447 |
|
@@ -620,9 +620,15 @@ with tab3:
|
|
620 |
with tab1:
|
621 |
if 'data_export_display' in st.session_state:
|
622 |
if site_var == 'Draftkings':
|
623 |
-
|
|
|
|
|
|
|
624 |
elif site_var == 'Fanduel':
|
625 |
-
|
|
|
|
|
|
|
626 |
|
627 |
# Flatten the DataFrame and count unique values
|
628 |
value_counts = player_columns.values.flatten().tolist()
|
@@ -656,9 +662,15 @@ with tab3:
|
|
656 |
with tab2:
|
657 |
if 'working_seed' in st.session_state:
|
658 |
if site_var == 'Draftkings':
|
659 |
-
|
|
|
|
|
|
|
660 |
elif site_var == 'Fanduel':
|
661 |
-
|
|
|
|
|
|
|
662 |
|
663 |
# Flatten the DataFrame and count unique values
|
664 |
value_counts = player_columns.flatten().tolist()
|
|
|
422 |
column_names = dk_sd_columns
|
423 |
# Get the minimum and maximum ownership values from dk_lineups
|
424 |
min_own = np.min(dk_lineups[:,12])
|
425 |
+
max_own = np.max(dk_lineups[:,12])
|
426 |
|
427 |
|
428 |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
|
|
|
441 |
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
|
442 |
column_names = fd_sd_columns
|
443 |
# Get the minimum and maximum ownership values from dk_lineups
|
444 |
+
min_own = np.min(fd_lineups[:,11])
|
445 |
max_own = np.max(fd_lineups[:,11])
|
446 |
|
447 |
|
|
|
620 |
with tab1:
|
621 |
if 'data_export_display' in st.session_state:
|
622 |
if site_var == 'Draftkings':
|
623 |
+
if slate_type_var3 == 'Regular':
|
624 |
+
player_columns = st.session_state.data_export_display.iloc[:, :10]
|
625 |
+
elif slate_type_var3 == 'Showdown':
|
626 |
+
player_columns = st.session_state.data_export_display.iloc[:, :7]
|
627 |
elif site_var == 'Fanduel':
|
628 |
+
if slate_type_var3 == 'Regular':
|
629 |
+
player_columns = st.session_state.data_export_display.iloc[:, :9]
|
630 |
+
elif slate_type_var3 == 'Showdown':
|
631 |
+
player_columns = st.session_state.data_export_display.iloc[:, :6]
|
632 |
|
633 |
# Flatten the DataFrame and count unique values
|
634 |
value_counts = player_columns.values.flatten().tolist()
|
|
|
662 |
with tab2:
|
663 |
if 'working_seed' in st.session_state:
|
664 |
if site_var == 'Draftkings':
|
665 |
+
if slate_type_var3 == 'Regular':
|
666 |
+
player_columns = st.session_state.working_seed[:, :10]
|
667 |
+
elif slate_type_var3 == 'Showdown':
|
668 |
+
player_columns = st.session_state.working_seed[:, :7]
|
669 |
elif site_var == 'Fanduel':
|
670 |
+
if slate_type_var3 == 'Regular':
|
671 |
+
player_columns = st.session_state.working_seed[:, :9]
|
672 |
+
elif slate_type_var3 == 'Showdown':
|
673 |
+
player_columns = st.session_state.working_seed[:, :6]
|
674 |
|
675 |
# Flatten the DataFrame and count unique values
|
676 |
value_counts = player_columns.flatten().tolist()
|