James McCool commited on
Commit
ca50776
·
1 Parent(s): 7f643e6

Refactor player column selection in app.py to dynamically adjust based on slate type for DraftKings and FanDuel, ensuring accurate data representation and enhancing user experience.

Browse files
Files changed (1) hide show
  1. app.py +18 -6
app.py CHANGED
@@ -422,7 +422,7 @@ with tab3:
422
  column_names = dk_sd_columns
423
  # Get the minimum and maximum ownership values from dk_lineups
424
  min_own = np.min(dk_lineups[:,12])
425
- max_own = np.max(dk_lineups[:,11])
426
 
427
 
428
  player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
@@ -441,7 +441,7 @@ with tab3:
441
  player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
442
  column_names = fd_sd_columns
443
  # Get the minimum and maximum ownership values from dk_lineups
444
- min_own = np.min(fd_lineups[:,12])
445
  max_own = np.max(fd_lineups[:,11])
446
 
447
 
@@ -620,9 +620,15 @@ with tab3:
620
  with tab1:
621
  if 'data_export_display' in st.session_state:
622
  if site_var == 'Draftkings':
623
- player_columns = st.session_state.data_export_display.iloc[:, :10]
 
 
 
624
  elif site_var == 'Fanduel':
625
- player_columns = st.session_state.data_export_display.iloc[:, :9]
 
 
 
626
 
627
  # Flatten the DataFrame and count unique values
628
  value_counts = player_columns.values.flatten().tolist()
@@ -656,9 +662,15 @@ with tab3:
656
  with tab2:
657
  if 'working_seed' in st.session_state:
658
  if site_var == 'Draftkings':
659
- player_columns = st.session_state.working_seed[:, :10]
 
 
 
660
  elif site_var == 'Fanduel':
661
- player_columns = st.session_state.working_seed[:, :9]
 
 
 
662
 
663
  # Flatten the DataFrame and count unique values
664
  value_counts = player_columns.flatten().tolist()
 
422
  column_names = dk_sd_columns
423
  # Get the minimum and maximum ownership values from dk_lineups
424
  min_own = np.min(dk_lineups[:,12])
425
+ max_own = np.max(dk_lineups[:,12])
426
 
427
 
428
  player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
 
441
  player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
442
  column_names = fd_sd_columns
443
  # Get the minimum and maximum ownership values from dk_lineups
444
+ min_own = np.min(fd_lineups[:,11])
445
  max_own = np.max(fd_lineups[:,11])
446
 
447
 
 
620
  with tab1:
621
  if 'data_export_display' in st.session_state:
622
  if site_var == 'Draftkings':
623
+ if slate_type_var3 == 'Regular':
624
+ player_columns = st.session_state.data_export_display.iloc[:, :10]
625
+ elif slate_type_var3 == 'Showdown':
626
+ player_columns = st.session_state.data_export_display.iloc[:, :7]
627
  elif site_var == 'Fanduel':
628
+ if slate_type_var3 == 'Regular':
629
+ player_columns = st.session_state.data_export_display.iloc[:, :9]
630
+ elif slate_type_var3 == 'Showdown':
631
+ player_columns = st.session_state.data_export_display.iloc[:, :6]
632
 
633
  # Flatten the DataFrame and count unique values
634
  value_counts = player_columns.values.flatten().tolist()
 
662
  with tab2:
663
  if 'working_seed' in st.session_state:
664
  if site_var == 'Draftkings':
665
+ if slate_type_var3 == 'Regular':
666
+ player_columns = st.session_state.working_seed[:, :10]
667
+ elif slate_type_var3 == 'Showdown':
668
+ player_columns = st.session_state.working_seed[:, :7]
669
  elif site_var == 'Fanduel':
670
+ if slate_type_var3 == 'Regular':
671
+ player_columns = st.session_state.working_seed[:, :9]
672
+ elif slate_type_var3 == 'Showdown':
673
+ player_columns = st.session_state.working_seed[:, :6]
674
 
675
  # Flatten the DataFrame and count unique values
676
  value_counts = player_columns.flatten().tolist()