James McCool commited on
Commit
e353ca4
·
1 Parent(s): 24d694e

Enhance app.py with dual database connections and implement caching for baseline data and lineups. Added functionality for data export and player frequency analysis, improving user interaction with new UI elements.

Browse files
Files changed (1) hide show
  1. app.py +339 -6
app.py CHANGED
@@ -16,14 +16,18 @@ def init_conn():
16
  uri = st.secrets['mongo_uri']
17
  client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
18
  db = client["MLB_Database"]
 
19
 
20
- return db
21
 
22
- # db = init_conn()
23
 
24
  player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
25
  '4x%': '{:.2%}'}
26
 
 
 
 
27
  st.markdown("""
28
  <style>
29
  /* Tab styling */
@@ -53,18 +57,347 @@ st.markdown("""
53
  }
54
  </style>""", unsafe_allow_html=True)
55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  view_var = st.radio("Select view", ["Simple", "Advanced"])
57
 
58
  tab1, tab2, tab3 = st.tabs(["Scoring Percentages", "Player ROO", "Optimals"])
59
 
60
  with tab1:
61
  st.title("Scoring Percentages")
62
- st.write("This is the scoring percentages tab.")
63
 
64
  with tab2:
65
  st.title("Player ROO")
66
- st.write("This is the player ROO tab.")
67
 
68
  with tab3:
69
- st.title("Optimals")
70
- st.write("This is the optimals tab.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  uri = st.secrets['mongo_uri']
17
  client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
18
  db = client["MLB_Database"]
19
+ db2 = client["MLB_DFS"]
20
 
21
+ return db, db2
22
 
23
+ db, db2 = init_conn()
24
 
25
  player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
26
  '4x%': '{:.2%}'}
27
 
28
+ dk_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']
29
+ fd_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']
30
+
31
  st.markdown("""
32
  <style>
33
  /* Tab styling */
 
57
  }
58
  </style>""", unsafe_allow_html=True)
59
 
60
+ @st.cache_resource(ttl = 60)
61
+ def init_baselines():
62
+ collection = db["Player_Range_Of_Outcomes"]
63
+ cursor = collection.find()
64
+ player_frame = pd.DataFrame(cursor)
65
+
66
+ timestamp = player_frame['Timestamp'][0]
67
+
68
+ roo_data = player_frame.drop(columns=['_id', 'index', 'timestamp'])
69
+ roo_data['Salary'] = roo_data['Salary'].astype(int)
70
+
71
+ collection = db["Player_SD_Range_Of_Outcomes"]
72
+ cursor = collection.find()
73
+ player_frame = pd.DataFrame(cursor)
74
+
75
+ sd_roo_data = player_frame.drop(columns=['_id', 'index'])
76
+ sd_roo_data['Salary'] = sd_roo_data['Salary'].astype(int)
77
+
78
+ collection = db["Scoring_Percentages"]
79
+ cursor = collection.find()
80
+ team_frame = pd.DataFrame(cursor)
81
+ scoring_percentages = team_frame.drop(columns=['_id', 'index'])
82
+
83
+ return roo_data, sd_roo_data, scoring_percentages
84
+
85
+ @st.cache_data(ttl = 60)
86
+ def init_DK_lineups():
87
+
88
+ collection = db['DK_MLB_SD1_seed_frame']
89
+ cursor = collection.find().limit(10000)
90
+
91
+ raw_display = pd.DataFrame(list(cursor))
92
+ raw_display = raw_display[['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']]
93
+ DK_seed = raw_display.to_numpy()
94
+
95
+ return DK_seed
96
+
97
+ @st.cache_data(ttl = 60)
98
+ def init_FD_lineups():
99
+
100
+ collection = db['FD_MLB_SD1_seed_frame']
101
+ cursor = collection.find().limit(10000)
102
+
103
+ raw_display = pd.DataFrame(list(cursor))
104
+ raw_display = raw_display[['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']]
105
+ FD_seed = raw_display.to_numpy()
106
+
107
+ return FD_seed
108
+
109
+ def convert_df_to_csv(df):
110
+ return df.to_csv().encode('utf-8')
111
+
112
+ @st.cache_data
113
+ def convert_df(array):
114
+ array = pd.DataFrame(array, columns=column_names)
115
+ return array.to_csv().encode('utf-8')
116
+
117
+ roo_data, sd_roo_data, scoring_percentages = init_baselines()
118
+ hold_display = roo_data
119
+
120
  view_var = st.radio("Select view", ["Simple", "Advanced"])
121
 
122
  tab1, tab2, tab3 = st.tabs(["Scoring Percentages", "Player ROO", "Optimals"])
123
 
124
  with tab1:
125
  st.title("Scoring Percentages")
126
+ st.dataframe(scoring_percentages)
127
 
128
  with tab2:
129
  st.title("Player ROO")
130
+ st.dataframe(sd_roo_data)
131
 
132
  with tab3:
133
+ with st.expander("Info and Filters"):
134
+ if st.button("Load/Reset Data", key='reset2'):
135
+ st.cache_data.clear()
136
+ roo_data, sd_roo_data, scoring_percentages = init_baselines()
137
+ hold_display = roo_data
138
+ dk_lineups = init_DK_lineups()
139
+ fd_lineups = init_FD_lineups()
140
+ t_stamp = f"Last Update: " + str(timestamp) + f" CST"
141
+ for key in st.session_state.keys():
142
+ del st.session_state[key]
143
+
144
+ slate_var1 = st.radio("Which data are you loading?", ('Regular', 'Showdown'))
145
+
146
+ site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
147
+ if slate_var1 == 'Regular':
148
+ if site_var1 == 'Draftkings':
149
+ dk_lineups = init_DK_lineups()
150
+ elif site_var1 == 'Fanduel':
151
+ fd_lineups = init_FD_lineups()
152
+ elif slate_var1 == 'Showdown':
153
+ if site_var1 == 'Draftkings':
154
+ dk_lineups = init_DK_lineups()
155
+ elif site_var1 == 'Fanduel':
156
+ fd_lineups = init_FD_lineups()
157
+ lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
158
+
159
+ if slate_var1 == 'Regular':
160
+ raw_baselines = roo_data
161
+ elif slate_var1 == 'Showdown':
162
+ raw_baselines = sd_roo_data
163
+
164
+ if site_var1 == 'Draftkings':
165
+ if slate_var1 == 'Regular':
166
+ ROO_slice = raw_baselines[raw_baselines['Site'] == 'Draftkings']
167
+ player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
168
+ elif slate_var1 == 'Showdown':
169
+ player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
170
+ # Get the minimum and maximum ownership values from dk_lineups
171
+ min_own = np.min(dk_lineups[:,8])
172
+ max_own = np.max(dk_lineups[:,8])
173
+ column_names = dk_columns
174
+
175
+ player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
176
+ if player_var1 == 'Specific Players':
177
+ player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique())
178
+ elif player_var1 == 'Full Slate':
179
+ player_var2 = raw_baselines.Player.values.tolist()
180
+
181
+ elif site_var1 == 'Fanduel':
182
+ raw_baselines = hold_display
183
+ if slate_var1 == 'Regular':
184
+ ROO_slice = raw_baselines[raw_baselines['Site'] == 'Fanduel']
185
+ player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
186
+ elif slate_var1 == 'Showdown':
187
+ player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
188
+ min_own = np.min(fd_lineups[:,8])
189
+ max_own = np.max(fd_lineups[:,8])
190
+ column_names = fd_columns
191
+
192
+ player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
193
+ if player_var1 == 'Specific Players':
194
+ player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique())
195
+ elif player_var1 == 'Full Slate':
196
+ player_var2 = raw_baselines.Player.values.tolist()
197
+
198
+ if st.button("Prepare data export", key='data_export'):
199
+ data_export = st.session_state.working_seed.copy()
200
+ # if site_var1 == 'Draftkings':
201
+ # for col_idx in range(6):
202
+ # data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
203
+ # elif site_var1 == 'Fanduel':
204
+ # for col_idx in range(6):
205
+ # data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
206
+ st.download_button(
207
+ label="Export optimals set",
208
+ data=convert_df(data_export),
209
+ file_name='MLB_optimals_export.csv',
210
+ mime='text/csv',
211
+ )
212
+
213
+ if site_var1 == 'Draftkings':
214
+ if 'working_seed' in st.session_state:
215
+ st.session_state.working_seed = st.session_state.working_seed
216
+ if player_var1 == 'Specific Players':
217
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
218
+ elif player_var1 == 'Full Slate':
219
+ st.session_state.working_seed = dk_lineups.copy()
220
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
221
+ elif 'working_seed' not in st.session_state:
222
+ st.session_state.working_seed = dk_lineups.copy()
223
+ st.session_state.working_seed = st.session_state.working_seed
224
+ if player_var1 == 'Specific Players':
225
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
226
+ elif player_var1 == 'Full Slate':
227
+ st.session_state.working_seed = dk_lineups.copy()
228
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
229
+
230
+ elif site_var1 == 'Fanduel':
231
+ if 'working_seed' in st.session_state:
232
+ st.session_state.working_seed = st.session_state.working_seed
233
+ if player_var1 == 'Specific Players':
234
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
235
+ elif player_var1 == 'Full Slate':
236
+ st.session_state.working_seed = fd_lineups.copy()
237
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
238
+ elif 'working_seed' not in st.session_state:
239
+ st.session_state.working_seed = fd_lineups.copy()
240
+ st.session_state.working_seed = st.session_state.working_seed
241
+ if player_var1 == 'Specific Players':
242
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
243
+ elif player_var1 == 'Full Slate':
244
+ st.session_state.working_seed = fd_lineups.copy()
245
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
246
+
247
+ export_file = st.session_state.data_export_display.copy()
248
+ # if site_var1 == 'Draftkings':
249
+ # for col_idx in range(6):
250
+ # export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
251
+ # elif site_var1 == 'Fanduel':
252
+ # for col_idx in range(6):
253
+ # export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
254
+
255
+ with st.container():
256
+ if st.button("Reset Optimals", key='reset3'):
257
+ for key in st.session_state.keys():
258
+ del st.session_state[key]
259
+ if site_var1 == 'Draftkings':
260
+ st.session_state.working_seed = dk_lineups.copy()
261
+ elif site_var1 == 'Fanduel':
262
+ st.session_state.working_seed = fd_lineups.copy()
263
+ if 'data_export_display' in st.session_state:
264
+ st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
265
+ st.download_button(
266
+ label="Export display optimals",
267
+ data=convert_df(export_file),
268
+ file_name='MLB_display_optimals.csv',
269
+ mime='text/csv',
270
+ )
271
+
272
+ with st.container():
273
+ if 'working_seed' in st.session_state:
274
+ # Create a new dataframe with summary statistics
275
+ if site_var1 == 'Draftkings':
276
+ summary_df = pd.DataFrame({
277
+ 'Metric': ['Min', 'Average', 'Max', 'STDdev'],
278
+ 'Salary': [
279
+ np.min(st.session_state.working_seed[:,6]),
280
+ np.mean(st.session_state.working_seed[:,6]),
281
+ np.max(st.session_state.working_seed[:,6]),
282
+ np.std(st.session_state.working_seed[:,6])
283
+ ],
284
+ 'Proj': [
285
+ np.min(st.session_state.working_seed[:,7]),
286
+ np.mean(st.session_state.working_seed[:,7]),
287
+ np.max(st.session_state.working_seed[:,7]),
288
+ np.std(st.session_state.working_seed[:,7])
289
+ ],
290
+ 'Own': [
291
+ np.min(st.session_state.working_seed[:,8]),
292
+ np.mean(st.session_state.working_seed[:,8]),
293
+ np.max(st.session_state.working_seed[:,8]),
294
+ np.std(st.session_state.working_seed[:,8])
295
+ ]
296
+ })
297
+ elif site_var1 == 'Fanduel':
298
+ summary_df = pd.DataFrame({
299
+ 'Metric': ['Min', 'Average', 'Max', 'STDdev'],
300
+ 'Salary': [
301
+ np.min(st.session_state.working_seed[:,6]),
302
+ np.mean(st.session_state.working_seed[:,6]),
303
+ np.max(st.session_state.working_seed[:,6]),
304
+ np.std(st.session_state.working_seed[:,6])
305
+ ],
306
+ 'Proj': [
307
+ np.min(st.session_state.working_seed[:,7]),
308
+ np.mean(st.session_state.working_seed[:,7]),
309
+ np.max(st.session_state.working_seed[:,7]),
310
+ np.std(st.session_state.working_seed[:,7])
311
+ ],
312
+ 'Own': [
313
+ np.min(st.session_state.working_seed[:,8]),
314
+ np.mean(st.session_state.working_seed[:,8]),
315
+ np.max(st.session_state.working_seed[:,8]),
316
+ np.std(st.session_state.working_seed[:,8])
317
+ ]
318
+ })
319
+
320
+ # Set the index of the summary dataframe as the "Metric" column
321
+ summary_df = summary_df.set_index('Metric')
322
+
323
+ # Display the summary dataframe
324
+ st.subheader("Optimal Statistics")
325
+ st.dataframe(summary_df.style.format({
326
+ 'Salary': '{:.2f}',
327
+ 'Proj': '{:.2f}',
328
+ 'Own': '{:.2f}'
329
+ }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
330
+
331
+ with st.container():
332
+ tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
333
+ with tab1:
334
+ if 'data_export_display' in st.session_state:
335
+ if site_var1 == 'Draftkings':
336
+ player_columns = st.session_state.data_export_display.iloc[:, :6]
337
+ elif site_var1 == 'Fanduel':
338
+ player_columns = st.session_state.data_export_display.iloc[:, :6]
339
+
340
+ # Flatten the DataFrame and count unique values
341
+ value_counts = player_columns.values.flatten().tolist()
342
+ value_counts = pd.Series(value_counts).value_counts()
343
+
344
+ percentages = (value_counts / lineup_num_var * 100).round(2)
345
+
346
+ # Create a DataFrame with the results
347
+ summary_df = pd.DataFrame({
348
+ 'Player': value_counts.index,
349
+ 'Frequency': value_counts.values,
350
+ 'Percentage': percentages.values
351
+ })
352
+
353
+ # Sort by frequency in descending order
354
+ summary_df['Salary'] = summary_df['Player'].map(player_salaries)
355
+ summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
356
+ summary_df = summary_df.sort_values('Frequency', ascending=False)
357
+ summary_df = summary_df.set_index('Player')
358
+
359
+ # Display the table
360
+ st.write("Player Frequency Table:")
361
+ st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
362
+
363
+ st.download_button(
364
+ label="Export player frequency",
365
+ data=convert_df_to_csv(summary_df),
366
+ file_name='MLB_player_frequency.csv',
367
+ mime='text/csv',
368
+ )
369
+ with tab2:
370
+ if 'working_seed' in st.session_state:
371
+ if site_var1 == 'Draftkings':
372
+ player_columns = st.session_state.working_seed[:, :6]
373
+ elif site_var1 == 'Fanduel':
374
+ player_columns = st.session_state.working_seed[:, :6]
375
+
376
+ # Flatten the DataFrame and count unique values
377
+ value_counts = player_columns.flatten().tolist()
378
+ value_counts = pd.Series(value_counts).value_counts()
379
+
380
+ percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
381
+ # Create a DataFrame with the results
382
+ summary_df = pd.DataFrame({
383
+ 'Player': value_counts.index,
384
+ 'Frequency': value_counts.values,
385
+ 'Percentage': percentages.values
386
+ })
387
+
388
+ # Sort by frequency in descending order
389
+ summary_df['Salary'] = summary_df['Player'].map(player_salaries)
390
+ summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
391
+ summary_df = summary_df.sort_values('Frequency', ascending=False)
392
+ summary_df = summary_df.set_index('Player')
393
+
394
+ # Display the table
395
+ st.write("Seed Frame Frequency Table:")
396
+ st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
397
+
398
+ st.download_button(
399
+ label="Export seed frame frequency",
400
+ data=convert_df_to_csv(summary_df),
401
+ file_name='MLB_seed_frame_frequency.csv',
402
+ mime='text/csv',
403
+ )