James McCool
Refactor data loading logic in Streamlit app by replacing expander with a container for improved layout. Simplify data reset functionality and ensure session state is cleared effectively.
c11ed09
import numpy as np
import pandas as pd
import streamlit as st
from itertools import combinations
import pymongo
st.set_page_config(layout="wide")
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["MLB_Database"]
return db
db = init_conn()
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
'5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}
wrong_acro = ['WSH', 'AZ', 'CHW']
right_acro = ['WAS', 'ARI', 'CWS']
st.markdown("""
<style>
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
padding: 4px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #FFD700;
color: white;
border-radius: 10px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stTabs [aria-selected="true"] {
background-color: #DAA520;
color: white;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #DAA520;
cursor: pointer;
}
</style>""", unsafe_allow_html=True)
@st.cache_resource(ttl = 60)
def init_stat_load():
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Own%', 'Site', 'Slate']]
raw_display = raw_display.rename(columns={'Own%': 'Own'})
initial_concat = raw_display.sort_values(by='Own', ascending=False)
return initial_concat
@st.cache_data
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
proj_raw = init_stat_load()
col1, col2 = st.columns([1, 5])
with col1:
with st.container():
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
proj_raw = init_stat_load()
for key in st.session_state.keys():
del st.session_state[key]
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
slate_var1 = st.radio("What slate are you working with?", ('Main Slate', 'Secondary Slate'), key='slate_var1')
if site_var1 == 'Draftkings':
raw_baselines = proj_raw[proj_raw['Site'] == 'Draftkings']
if slate_var1 == 'Main Slate':
raw_baselines = raw_baselines[raw_baselines['Slate'] == 'main_slate']
elif slate_var1 == 'Secondary Slate':
raw_baselines = raw_baselines[raw_baselines['Slate'] == 'secondary_slate']
raw_baselines = raw_baselines.sort_values(by='Own', ascending=False)
elif site_var1 == 'Fanduel':
raw_baselines = proj_raw[proj_raw['Site'] == 'Fanduel']
if slate_var1 == 'Main Slate':
raw_baselines = raw_baselines[raw_baselines['Slate'] == 'main_slate']
elif slate_var1 == 'Secondary Slate':
raw_baselines = raw_baselines[raw_baselines['Slate'] == 'secondary_slate']
raw_baselines = raw_baselines.sort_values(by='Own', ascending=False)
split_var2 = st.radio("Would you like to run stack analysis for the full slate or individual teams?", ('Full Slate Run', 'Specific Teams'), key='split_var2')
if split_var2 == 'Specific Teams':
team_var2 = st.multiselect('Which teams would you like to include in the analysis?', options = raw_baselines['Team'].unique(), key='team_var2')
elif split_var2 == 'Full Slate Run':
team_var2 = raw_baselines.Team.unique().tolist()
pos_split2 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split2')
if pos_split2 == 'Specific Positions':
pos_var2 = st.multiselect('What Positions would you like to view?', options = ['SP', 'P', 'C', '1B', '2B', '3B', 'SS', 'OF'])
elif pos_split2 == 'All Positions':
pos_var2 = 'All'
if site_var1 == 'Draftkings':
max_sal2 = st.number_input('Max Salary', min_value = 5000, max_value = 50000, value = 35000, step = 100, key='max_sal2')
elif site_var1 == 'Fanduel':
max_sal2 = st.number_input('Max Salary', min_value = 5000, max_value = 35000, value = 25000, step = 100, key='max_sal2')
size_var2 = st.selectbox('What size of stacks are you analyzing?', options = ['3-man', '4-man', '5-man'])
if size_var2 == '3-man':
stack_size = 3
if size_var2 == '4-man':
stack_size = 4
if size_var2 == '5-man':
stack_size = 5
team_dict = dict(zip(raw_baselines.Player, raw_baselines.Team))
proj_dict = dict(zip(raw_baselines.Player, raw_baselines.Median))
own_dict = dict(zip(raw_baselines.Player, raw_baselines.Own))
cost_dict = dict(zip(raw_baselines.Player, raw_baselines.Salary))
with col2:
stack_hold_container = st.empty()
comb_list = []
if pos_split2 == 'All Positions':
raw_baselines = raw_baselines
elif pos_split2 != 'All Positions':
raw_baselines = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var2))]
for cur_team in team_var2:
working_baselines = raw_baselines
working_baselines = working_baselines[working_baselines['Team'] == cur_team]
working_baselines = working_baselines[working_baselines['Position'] != 'SP']
working_baselines = working_baselines[working_baselines['Position'] != 'P']
order_list = working_baselines['Player']
comb = combinations(order_list, stack_size)
for i in list(comb):
comb_list.append(i)
comb_DF = pd.DataFrame(comb_list)
if stack_size == 3:
comb_DF['Team'] = comb_DF[0].map(team_dict)
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
comb_DF[1].map(proj_dict),
comb_DF[2].map(proj_dict)])
comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
comb_DF[1].map(cost_dict),
comb_DF[2].map(cost_dict)])
comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
comb_DF[1].map(own_dict),
comb_DF[2].map(own_dict)])
elif stack_size == 4:
comb_DF['Team'] = comb_DF[0].map(team_dict)
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
comb_DF[1].map(proj_dict),
comb_DF[2].map(proj_dict),
comb_DF[3].map(proj_dict)])
comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
comb_DF[1].map(cost_dict),
comb_DF[2].map(cost_dict),
comb_DF[3].map(cost_dict)])
comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
comb_DF[1].map(own_dict),
comb_DF[2].map(own_dict),
comb_DF[3].map(own_dict)])
elif stack_size == 5:
comb_DF['Team'] = comb_DF[0].map(team_dict)
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
comb_DF[1].map(proj_dict),
comb_DF[2].map(proj_dict),
comb_DF[3].map(proj_dict),
comb_DF[4].map(proj_dict)])
comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
comb_DF[1].map(cost_dict),
comb_DF[2].map(cost_dict),
comb_DF[3].map(cost_dict),
comb_DF[4].map(cost_dict)])
comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
comb_DF[1].map(own_dict),
comb_DF[2].map(own_dict),
comb_DF[3].map(own_dict),
comb_DF[4].map(own_dict)])
comb_DF = comb_DF.sort_values(by='Proj', ascending=False)
comb_DF = comb_DF.loc[comb_DF['Salary'] <= max_sal2]
cut_var = 0
if stack_size == 3:
while cut_var <= int(len(comb_DF)):
try:
if int(cut_var) == 0:
cur_proj = float(comb_DF.iat[cut_var,4])
cur_own = float(comb_DF.iat[cut_var,6])
elif int(cut_var) >= 1:
check_own = float(comb_DF.iat[cut_var,6])
if check_own > cur_own:
comb_DF = comb_DF.drop([cut_var])
cur_own = cur_own
cut_var = cut_var - 1
comb_DF = comb_DF.reset_index()
comb_DF = comb_DF.drop(['index'], axis=1)
elif check_own <= cur_own:
cur_own = float(comb_DF.iat[cut_var,6])
cut_var = cut_var
cut_var += 1
except:
cut_var += 1
elif stack_size == 4:
while cut_var <= int(len(comb_DF)):
try:
if int(cut_var) == 0:
cur_proj = float(comb_DF.iat[cut_var,5])
cur_own = float(comb_DF.iat[cut_var,7])
elif int(cut_var) >= 1:
check_own = float(comb_DF.iat[cut_var,7])
if check_own > cur_own:
comb_DF = comb_DF.drop([cut_var])
cur_own = cur_own
cut_var = cut_var - 1
comb_DF = comb_DF.reset_index()
comb_DF = comb_DF.drop(['index'], axis=1)
elif check_own <= cur_own:
cur_own = float(comb_DF.iat[cut_var,7])
cut_var = cut_var
cut_var += 1
except:
cut_var += 1
elif stack_size == 5:
while cut_var <= int(len(comb_DF)):
try:
if int(cut_var) == 0:
cur_proj = float(comb_DF.iat[cut_var,6])
cur_own = float(comb_DF.iat[cut_var,8])
elif int(cut_var) >= 1:
check_own = float(comb_DF.iat[cut_var,8])
if check_own > cur_own:
comb_DF = comb_DF.drop([cut_var])
cur_own = cur_own
cut_var = cut_var - 1
comb_DF = comb_DF.reset_index()
comb_DF = comb_DF.drop(['index'], axis=1)
elif check_own <= cur_own:
cur_own = float(comb_DF.iat[cut_var,8])
cut_var = cut_var
cut_var += 1
except:
cut_var += 1
with stack_hold_container:
stack_hold_container = st.empty()
st.dataframe(comb_DF.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(comb_DF),
file_name='MLB_Stack_Options_export.csv',
mime='text/csv',
)