import numpy as np import pandas as pd import streamlit as st from itertools import combinations import pymongo st.set_page_config(layout="wide") @st.cache_resource def init_conn(): uri = st.secrets['mongo_uri'] client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) db = client["MLB_Database"] return db db = init_conn() game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'} team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}', '5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'} wrong_acro = ['WSH', 'AZ', 'CHW'] right_acro = ['WAS', 'ARI', 'CWS'] st.markdown(""" """, unsafe_allow_html=True) @st.cache_resource(ttl = 60) def init_stat_load(): collection = db["Player_Range_Of_Outcomes"] cursor = collection.find() raw_display = pd.DataFrame(list(cursor)) raw_display = raw_display[['Player', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Own%', 'Site', 'Slate']] raw_display = raw_display.rename(columns={'Own%': 'Own'}) initial_concat = raw_display.sort_values(by='Own', ascending=False) return initial_concat @st.cache_data def convert_df_to_csv(df): return df.to_csv().encode('utf-8') proj_raw = init_stat_load() col1, col2 = st.columns([1, 5]) with col1: with st.container(): if st.button("Load/Reset Data", key='reset1'): st.cache_data.clear() proj_raw = init_stat_load() for key in st.session_state.keys(): del st.session_state[key] site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1') slate_var1 = st.radio("What slate are you working with?", ('Main Slate', 'Secondary Slate'), key='slate_var1') if site_var1 == 'Draftkings': raw_baselines = proj_raw[proj_raw['Site'] == 'Draftkings'] if slate_var1 == 'Main Slate': raw_baselines = raw_baselines[raw_baselines['Slate'] == 'main_slate'] elif slate_var1 == 'Secondary Slate': raw_baselines = raw_baselines[raw_baselines['Slate'] == 'secondary_slate'] raw_baselines = raw_baselines.sort_values(by='Own', ascending=False) elif site_var1 == 'Fanduel': raw_baselines = proj_raw[proj_raw['Site'] == 'Fanduel'] if slate_var1 == 'Main Slate': raw_baselines = raw_baselines[raw_baselines['Slate'] == 'main_slate'] elif slate_var1 == 'Secondary Slate': raw_baselines = raw_baselines[raw_baselines['Slate'] == 'secondary_slate'] raw_baselines = raw_baselines.sort_values(by='Own', ascending=False) split_var2 = st.radio("Would you like to run stack analysis for the full slate or individual teams?", ('Full Slate Run', 'Specific Teams'), key='split_var2') if split_var2 == 'Specific Teams': team_var2 = st.multiselect('Which teams would you like to include in the analysis?', options = raw_baselines['Team'].unique(), key='team_var2') elif split_var2 == 'Full Slate Run': team_var2 = raw_baselines.Team.unique().tolist() pos_split2 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split2') if pos_split2 == 'Specific Positions': pos_var2 = st.multiselect('What Positions would you like to view?', options = ['SP', 'P', 'C', '1B', '2B', '3B', 'SS', 'OF']) elif pos_split2 == 'All Positions': pos_var2 = 'All' if site_var1 == 'Draftkings': max_sal2 = st.number_input('Max Salary', min_value = 5000, max_value = 50000, value = 35000, step = 100, key='max_sal2') elif site_var1 == 'Fanduel': max_sal2 = st.number_input('Max Salary', min_value = 5000, max_value = 35000, value = 25000, step = 100, key='max_sal2') size_var2 = st.selectbox('What size of stacks are you analyzing?', options = ['3-man', '4-man', '5-man']) if size_var2 == '3-man': stack_size = 3 if size_var2 == '4-man': stack_size = 4 if size_var2 == '5-man': stack_size = 5 team_dict = dict(zip(raw_baselines.Player, raw_baselines.Team)) proj_dict = dict(zip(raw_baselines.Player, raw_baselines.Median)) own_dict = dict(zip(raw_baselines.Player, raw_baselines.Own)) cost_dict = dict(zip(raw_baselines.Player, raw_baselines.Salary)) with col2: stack_hold_container = st.empty() comb_list = [] if pos_split2 == 'All Positions': raw_baselines = raw_baselines elif pos_split2 != 'All Positions': raw_baselines = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var2))] for cur_team in team_var2: working_baselines = raw_baselines working_baselines = working_baselines[working_baselines['Team'] == cur_team] working_baselines = working_baselines[working_baselines['Position'] != 'SP'] working_baselines = working_baselines[working_baselines['Position'] != 'P'] order_list = working_baselines['Player'] comb = combinations(order_list, stack_size) for i in list(comb): comb_list.append(i) comb_DF = pd.DataFrame(comb_list) if stack_size == 3: comb_DF['Team'] = comb_DF[0].map(team_dict) comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict), comb_DF[1].map(proj_dict), comb_DF[2].map(proj_dict)]) comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict), comb_DF[1].map(cost_dict), comb_DF[2].map(cost_dict)]) comb_DF['Own%'] = sum([comb_DF[0].map(own_dict), comb_DF[1].map(own_dict), comb_DF[2].map(own_dict)]) elif stack_size == 4: comb_DF['Team'] = comb_DF[0].map(team_dict) comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict), comb_DF[1].map(proj_dict), comb_DF[2].map(proj_dict), comb_DF[3].map(proj_dict)]) comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict), comb_DF[1].map(cost_dict), comb_DF[2].map(cost_dict), comb_DF[3].map(cost_dict)]) comb_DF['Own%'] = sum([comb_DF[0].map(own_dict), comb_DF[1].map(own_dict), comb_DF[2].map(own_dict), comb_DF[3].map(own_dict)]) elif stack_size == 5: comb_DF['Team'] = comb_DF[0].map(team_dict) comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict), comb_DF[1].map(proj_dict), comb_DF[2].map(proj_dict), comb_DF[3].map(proj_dict), comb_DF[4].map(proj_dict)]) comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict), comb_DF[1].map(cost_dict), comb_DF[2].map(cost_dict), comb_DF[3].map(cost_dict), comb_DF[4].map(cost_dict)]) comb_DF['Own%'] = sum([comb_DF[0].map(own_dict), comb_DF[1].map(own_dict), comb_DF[2].map(own_dict), comb_DF[3].map(own_dict), comb_DF[4].map(own_dict)]) comb_DF = comb_DF.sort_values(by='Proj', ascending=False) comb_DF = comb_DF.loc[comb_DF['Salary'] <= max_sal2] cut_var = 0 if stack_size == 3: while cut_var <= int(len(comb_DF)): try: if int(cut_var) == 0: cur_proj = float(comb_DF.iat[cut_var,4]) cur_own = float(comb_DF.iat[cut_var,6]) elif int(cut_var) >= 1: check_own = float(comb_DF.iat[cut_var,6]) if check_own > cur_own: comb_DF = comb_DF.drop([cut_var]) cur_own = cur_own cut_var = cut_var - 1 comb_DF = comb_DF.reset_index() comb_DF = comb_DF.drop(['index'], axis=1) elif check_own <= cur_own: cur_own = float(comb_DF.iat[cut_var,6]) cut_var = cut_var cut_var += 1 except: cut_var += 1 elif stack_size == 4: while cut_var <= int(len(comb_DF)): try: if int(cut_var) == 0: cur_proj = float(comb_DF.iat[cut_var,5]) cur_own = float(comb_DF.iat[cut_var,7]) elif int(cut_var) >= 1: check_own = float(comb_DF.iat[cut_var,7]) if check_own > cur_own: comb_DF = comb_DF.drop([cut_var]) cur_own = cur_own cut_var = cut_var - 1 comb_DF = comb_DF.reset_index() comb_DF = comb_DF.drop(['index'], axis=1) elif check_own <= cur_own: cur_own = float(comb_DF.iat[cut_var,7]) cut_var = cut_var cut_var += 1 except: cut_var += 1 elif stack_size == 5: while cut_var <= int(len(comb_DF)): try: if int(cut_var) == 0: cur_proj = float(comb_DF.iat[cut_var,6]) cur_own = float(comb_DF.iat[cut_var,8]) elif int(cut_var) >= 1: check_own = float(comb_DF.iat[cut_var,8]) if check_own > cur_own: comb_DF = comb_DF.drop([cut_var]) cur_own = cur_own cut_var = cut_var - 1 comb_DF = comb_DF.reset_index() comb_DF = comb_DF.drop(['index'], axis=1) elif check_own <= cur_own: cur_own = float(comb_DF.iat[cut_var,8]) cut_var = cut_var cut_var += 1 except: cut_var += 1 with stack_hold_container: stack_hold_container = st.empty() st.dataframe(comb_DF.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) st.download_button( label="Export Tables", data=convert_df_to_csv(comb_DF), file_name='MLB_Stack_Options_export.csv', mime='text/csv', )