MLB_HR_Finder / src /streamlit_app.py
James McCool
Update Streamlit app to filter out rows with '#N/A' in the 'Binom_xHR' column, improving data quality and relevance for users.
7de31fb
import numpy as np
import pandas as pd
import streamlit as st
import pymongo
import os
st.set_page_config(layout="wide")
@st.cache_resource
def init_conn():
uri = os.getenv('mongo_uri')
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["MLB_Database"]
return db
db = init_conn()
@st.cache_resource(ttl = 60)
def init_baselines():
collection = db["HR_Table"]
cursor = collection.find()
raw_display = pd.DataFrame(cursor)
raw_display.rename(columns={"Names": "Player"}, inplace = True)
raw_frame = raw_display.drop(columns=['_id']).drop_duplicates(subset='Player')
raw_frame = raw_frame[raw_frame['Binom_xHR'] != "#N/A"]
return raw_frame
hr_frame = init_baselines()
st.title("HR Finder Table")
with st.container():
col1, col2, col3 = st.columns(3)
with col1:
disp_options = st.radio("Display options:", options = ['Basics', 'Exclude DFS Info', 'Include DFS Info'], key='display_options')
with col2:
team_options = st.multiselect("Parse Teams:", options = hr_frame.Team.unique(), key = 'team_options')
with col3:
pos_options = st.multiselect("Parse Positions:", options = ['C', '1B', '2B', '3B', 'SS', 'OF'], key = 'pos_options')
if len(team_options) > 0:
hr_frame = hr_frame[hr_frame['Team'].isin(team_options)]
if len(pos_options) > 0:
position_mask = hr_frame['Position'].apply(lambda x: any(pos in x for pos in pos_options))
hr_frame = hr_frame[position_mask]
if disp_options == 'Basics':
st.session_state['disp_frame'] = hr_frame[['Player', 'xHR/PA', 'Opp_xHR/PA', 'BP_Binom_xHR', 'Binom_xHR']]
st.session_state['disp_frame'] = st.session_state['disp_frame'].rename(columns={'xHR/PA': 'Hitter', 'Opp_xHR/PA': 'SP', 'BP_Binom_xHR': 'BP', 'Binom_xHR': 'xHRs'})
st.session_state['disp_frame'] = st.session_state['disp_frame'].sort_values(by='xHRs', ascending=False)
elif disp_options == 'Exclude DFS Info':
st.session_state['disp_frame'] = hr_frame.drop(columns=['Salary', 'Position', 'FD_Position', 'Order', 'NQ_Factor'])
st.session_state['disp_frame'] = st.session_state['disp_frame'].sort_values(by='Binom_xHR', ascending=False)
else:
st.session_state['disp_frame'] = hr_frame.copy()
st.session_state['disp_frame'] = st.session_state['disp_frame'].sort_values(by='Binom_xHR', ascending=False)
st.session_state['disp_frame'] = st.session_state['disp_frame'].set_index('Player', drop = True)
if 'disp_frame' in st.session_state:
st.dataframe(st.session_state['disp_frame'].style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(precision=2), height=1200, use_container_width = True)