Spaces:
Running
Running
James McCool
Update Streamlit app to filter out rows with '#N/A' in the 'Binom_xHR' column, improving data quality and relevance for users.
7de31fb
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
import pymongo | |
import os | |
st.set_page_config(layout="wide") | |
def init_conn(): | |
uri = os.getenv('mongo_uri') | |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) | |
db = client["MLB_Database"] | |
return db | |
db = init_conn() | |
def init_baselines(): | |
collection = db["HR_Table"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(cursor) | |
raw_display.rename(columns={"Names": "Player"}, inplace = True) | |
raw_frame = raw_display.drop(columns=['_id']).drop_duplicates(subset='Player') | |
raw_frame = raw_frame[raw_frame['Binom_xHR'] != "#N/A"] | |
return raw_frame | |
hr_frame = init_baselines() | |
st.title("HR Finder Table") | |
with st.container(): | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
disp_options = st.radio("Display options:", options = ['Basics', 'Exclude DFS Info', 'Include DFS Info'], key='display_options') | |
with col2: | |
team_options = st.multiselect("Parse Teams:", options = hr_frame.Team.unique(), key = 'team_options') | |
with col3: | |
pos_options = st.multiselect("Parse Positions:", options = ['C', '1B', '2B', '3B', 'SS', 'OF'], key = 'pos_options') | |
if len(team_options) > 0: | |
hr_frame = hr_frame[hr_frame['Team'].isin(team_options)] | |
if len(pos_options) > 0: | |
position_mask = hr_frame['Position'].apply(lambda x: any(pos in x for pos in pos_options)) | |
hr_frame = hr_frame[position_mask] | |
if disp_options == 'Basics': | |
st.session_state['disp_frame'] = hr_frame[['Player', 'xHR/PA', 'Opp_xHR/PA', 'BP_Binom_xHR', 'Binom_xHR']] | |
st.session_state['disp_frame'] = st.session_state['disp_frame'].rename(columns={'xHR/PA': 'Hitter', 'Opp_xHR/PA': 'SP', 'BP_Binom_xHR': 'BP', 'Binom_xHR': 'xHRs'}) | |
st.session_state['disp_frame'] = st.session_state['disp_frame'].sort_values(by='xHRs', ascending=False) | |
elif disp_options == 'Exclude DFS Info': | |
st.session_state['disp_frame'] = hr_frame.drop(columns=['Salary', 'Position', 'FD_Position', 'Order', 'NQ_Factor']) | |
st.session_state['disp_frame'] = st.session_state['disp_frame'].sort_values(by='Binom_xHR', ascending=False) | |
else: | |
st.session_state['disp_frame'] = hr_frame.copy() | |
st.session_state['disp_frame'] = st.session_state['disp_frame'].sort_values(by='Binom_xHR', ascending=False) | |
st.session_state['disp_frame'] = st.session_state['disp_frame'].set_index('Player', drop = True) | |
if 'disp_frame' in st.session_state: | |
st.dataframe(st.session_state['disp_frame'].style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(precision=2), height=1200, use_container_width = True) |