James McCool commited on
Commit
b92949e
·
1 Parent(s): 2caf167

Update requirements and enhance Streamlit app with MongoDB integration. Added pymongo to requirements and implemented database connection and data retrieval in streamlit_app.py.

Browse files
Files changed (2) hide show
  1. requirements.txt +2 -1
  2. src/streamlit_app.py +29 -36
requirements.txt CHANGED
@@ -1,3 +1,4 @@
1
  altair
2
  pandas
3
- streamlit
 
 
1
  altair
2
  pandas
3
+ streamlit
4
+ pymongo
src/streamlit_app.py CHANGED
@@ -1,40 +1,33 @@
1
- import altair as alt
2
  import numpy as np
3
  import pandas as pd
4
  import streamlit as st
 
5
 
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
1
  import numpy as np
2
  import pandas as pd
3
  import streamlit as st
4
+ import pymongo
5
 
6
+ st.set_page_config(layout="wide")
7
+
8
+ @st.cache_resource
9
+ def init_conn():
10
+
11
+ uri = st.secrets['mongo_uri']
12
+ client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
13
+ db = client["MLB_Database"]
14
+
15
+ return db
16
+
17
+ db = init_conn()
18
+
19
+ @st.cache_resource(ttl = 300)
20
+ def init_baselines():
21
+ collection = db["HR_Table"]
22
+ cursor = collection.find()
23
+ raw_display = pd.DataFrame(cursor)
24
+ raw_display.rename(columns={"Names": "Player"}, inplace = True)
25
+ raw_frame = raw_display.drop_duplicates(subset='Player')
26
+
27
+ return raw_frame
28
+
29
+
30
+ hr_frame = init_baselines()
31
+ st.title("HR Finder Table")
32
+
33
+ st.dataframe(hr_frame, use_container_width = True, hide_index = True)