File size: 7,696 Bytes
ab2c04b 5847715 ab2c04b 51c1a0b d5d4d17 ab2c04b 51c1a0b ab2c04b d5d4d17 ab2c04b d5d4d17 ab2c04b 72321a2 ab2c04b 2ea483c ab2c04b 2ea483c ab2c04b 2ea483c ab2c04b 2ea483c ab2c04b 2ea483c ab2c04b 2ea483c ab2c04b 2ea483c ab2c04b 2ea483c adce0d1 2ea483c ab2c04b 2ea483c ab2c04b 2ea483c ab2c04b 2ea483c ab2c04b 2ea483c ab2c04b d5d4d17 ab2c04b 2f31f7d ab2c04b 2f31f7d ab2c04b 2ea483c ab2c04b 2ea483c ab2c04b 2ea483c ab2c04b 2ea483c ab2c04b 2ea483c 2f31f7d 2ea483c 7c7d5e6 ab2c04b 2ea483c ab2c04b 2ea483c ab2c04b 2ea483c ab2c04b 2ea483c ab2c04b 2ea483c 2f31f7d 7c7d5e6 ab2c04b 2ea483c ab2c04b 2ea483c 2f31f7d 7c7d5e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import streamlit as st
import numpy as np
import pandas as pd
import pymongo
import os
st.set_page_config(layout="wide")
@st.cache_resource
def init_conn():
uri = os.getenv('mongo_uri')
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["MLB_Database"]
return db
db = init_conn()
st.markdown("""
<style>
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
padding: 4px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #DAA520;
color: white;
border-radius: 10px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stTabs [aria-selected="true"] {
background-color: #DAA520;
border: 3px solid #FFD700;
color: white;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #FFD700;
cursor: pointer;
}
div[data-baseweb="select"] > div {
background-color: #DAA520;
color: white;
}
div{
box-sizing: content-box !important;
}
</style>""", unsafe_allow_html=True)
@st.cache_resource(ttl = 61)
def init_baselines():
db_pulls = ['Bullpen_Data', 'Hitter_Agg_Merge', 'Hitter_Long_Merge', 'Hitter_Short_Merge', 'Pitcher_Agg_Merge', 'Pitcher_Long_Merge', 'Pitcher_Short_Merge',
'Slate_Hitters_Merge', 'Slate_Teams_Merge', 'Starting_Pitchers', 'True_AVG_Split', 'Pitcher_Info', 'Hitter_Info']
for table in db_pulls:
collection = db[table]
cursor = collection.find()
df = pd.DataFrame(cursor)
if table == 'Bullpen_Data':
bp_data = df.drop(columns = ['_id'])
elif table == 'Hitter_Agg_Merge':
hitter_agg = df.drop(columns = ['_id'])
elif table == 'Hitter_Long_Merge':
hitter_long = df.drop(columns = ['_id'])
elif table == 'Hitter_Short_Merge':
hitter_short = df.drop(columns = ['_id'])
elif table == 'Pitcher_Agg_Merge':
pitcher_agg = df.drop(columns = ['_id'])
elif table == 'Pitcher_Long_Merge':
pitcher_long = df.drop(columns = ['_id'])
elif table == 'Pitcher_Short_Merge':
pitcher_short = df.drop(columns = ['_id'])
elif table == 'Slate_Hitters_Merge':
slate_hitters = df.drop(columns = ['_id'])
elif table == 'Slate_Teams_Merge':
slate_team = df.drop(columns = ['_id'])
elif table == 'Starting_Pitchers':
starting_pitchers = df.drop(columns = ['_id'])
elif table == 'True_AVG_Split':
true_avg_split = df.drop(columns = ['_id'])
elif table == 'Pitcher_Info':
pitcher_info = df.drop(columns = ['_id'])
elif table == 'Hitter_Info':
hitter_info = df.drop(columns = ['_id'])
return bp_data, hitter_agg, hitter_long, hitter_short, pitcher_agg, pitcher_long, pitcher_short, slate_hitters, slate_team, starting_pitchers, true_avg_split, pitcher_info, hitter_info
bp_data, hitter_agg, hitter_long, hitter_short, pitcher_agg, pitcher_long, pitcher_short, slate_hitters, slate_team, starting_pitchers, true_avg_split, pitcher_info, hitter_info = init_baselines()
pitcher_tab, hitter_tab, team_tab = st.tabs(['Pitchers', 'Hitters', 'Team'])
with pitcher_tab:
with st.expander('Info and Display Options'):
st.info('Note: Splits options are available for all baseline tables, they do not apply to True AVG, HWSr, or the Overview tables')
col1, col2, col3 = st.columns(3)
with col1:
site_var_sp = st.selectbox('Site', ['DraftKings', 'FanDuel'], key = 'site_var_sp')
with col2:
table_var_sp = st.selectbox('Table', ['True AVG Splits', 'HWSr Splits', 'Current Slate Overview', 'Active Baselines', 'League Aggregate Baselines', 'League Short Term Baselines', 'League Long Term Baselines'], key = 'table_var_sp')
with col3:
splits_var_sp = st.selectbox('Splits', ['Overall', 'RHH', 'LHH'], key = 'splits_var_sp')
if table_var_sp == 'True AVG Splits':
disp_raw = true_avg_split
disp_raw = disp_raw[['Player', 'Handedness', 'Team', 'Opp', 'Opp LHH', 'Opp RHH', 'True AVG (LHH)', 'True AVG (RHH)', 'True AVG (Overall)', 'Weighted True AVG']]
st.session_state['sp_disp_frame'] = disp_raw
elif table_var_sp == 'HWSr Splits':
disp_raw = true_avg_split
disp_raw = disp_raw[['Player', 'Handedness', 'Team', 'Opp', 'Opp LHH', 'Opp RHH', 'HWSr (LHH)', 'HWSr (RHH)', 'HWSr (Overall)', 'Weighted HWSr']]
st.session_state['sp_disp_frame'] = disp_raw
elif table_var_sp == 'Current Slate Overview':
st.session_state['sp_disp_frame'] = starting_pitchers
elif table_var_sp == 'Active Baselines':
st.session_state['sp_disp_frame'] = pitcher_info
elif table_var_sp == 'League Aggregate Baselines':
st.session_state['sp_disp_frame'] = pitcher_agg
elif table_var_sp == 'League Short Term Baselines':
st.session_state['sp_disp_frame'] = pitcher_short
elif table_var_sp == 'League Long Term Baselines':
st.session_state['sp_disp_frame'] = pitcher_long
sp_disp_container = st.container(border = True)
sp_disp_container = sp_disp_container.empty()
with sp_disp_container:
st.dataframe(st.session_state['sp_disp_frame'])
with hitter_tab:
with st.expander('Info and Display Options'):
st.info('Note: Splits options are available for all baseline tables')
col1, col2, col3 = st.columns(3)
with col1:
site_var_hitter = st.selectbox('Site', ['DraftKings', 'FanDuel'], key = 'site_var_hitter')
with col2:
table_var_hitter = st.selectbox('Table', ['Active Baselines', 'League Aggregate Baselines', 'League Short Term Baselines', 'League Long Term Baselines'], key = 'table_var_hitter')
with col3:
splits_var_hitter = st.selectbox('Splits', ['Overall', 'RHP', 'LHP'], key = 'splits_var_hitter')
if table_var_hitter == 'Current Slate Overview':
st.session_state['hitter_disp_frame'] = starting_pitchers
elif table_var_hitter == 'Active Baselines':
st.session_state['hitter_disp_frame'] = hitter_info
elif table_var_hitter == 'League Aggregate Baselines':
st.session_state['hitter_disp_frame'] = hitter_agg
elif table_var_hitter == 'League Short Term Baselines':
st.session_state['hitter_disp_frame'] = hitter_short
elif table_var_hitter == 'League Long Term Baselines':
st.session_state['hitter_disp_frame'] = hitter_long
hitter_disp_container = st.container(border = True)
hitter_disp_container = hitter_disp_container.empty()
with hitter_disp_container:
st.dataframe(st.session_state['hitter_disp_frame'])
with team_tab:
with st.expander('Info and Display Options'):
col1, col2, col3 = st.columns(3)
with col1:
site_var_team= st.selectbox('Site', ['DraftKings', 'FanDuel'], key = 'site_var_team')
with col2:
table_var_team = st.selectbox('Table', ['Team Baselines', 'Bullpen Baselines'], key = 'table_var_team')
if table_var_team == 'Team Baselines':
st.session_state['team_disp_frame'] = slate_team
elif table_var_team == 'Bullpen Baselines':
st.session_state['team_disp_frame'] = bp_data
team_disp_container = st.container(border = True)
team_disp_container = team_disp_container.empty()
with team_disp_container:
st.dataframe(st.session_state['team_disp_frame']) |