File size: 15,406 Bytes
ab2c04b 5847715 ab2c04b 51c1a0b 771c8ac d5d4d17 ab2c04b 51c1a0b ab2c04b d5d4d17 ab2c04b d5d4d17 ab2c04b 8f402fd 39f346a f79125f be3b754 f79125f 256492d ab2c04b 72321a2 ab2c04b f738bbd ab2c04b f738bbd ab2c04b f738bbd ab2c04b f738bbd ab2c04b f738bbd ab2c04b f738bbd ab2c04b f738bbd ab2c04b f738bbd adce0d1 f738bbd ab2c04b f738bbd ab2c04b f738bbd ab2c04b f738bbd ab2c04b f738bbd ab2c04b 39f346a ab2c04b 9ca66f9 ab2c04b c256b63 9ca66f9 93913de 9ca66f9 d5d4d17 ab2c04b 2f31f7d 6e9c2dc 2f31f7d fb140dc ab2c04b 2f31f7d 6e9c2dc 2f31f7d fb140dc ab2c04b fb140dc ab2c04b 2a7c2bb 6e9c2dc 2a7c2bb 6e9c2dc df23dc3 f962e85 fb140dc ab2c04b 2a7c2bb fb140dc ab2c04b 2a7c2bb fb140dc ab2c04b 2a7c2bb 2f31f7d fb140dc c47e22d 2f31f7d 2ea483c c47e22d f79125f c47e22d ab2c04b 39f346a ab2c04b 834a92c ab2c04b fb140dc ab2c04b 6e9c2dc ab2c04b 9ca66f9 7a0cd57 834a92c 9ca66f9 7a0cd57 9ca66f9 93913de 834a92c ab2c04b 6e9c2dc c14bbec 86d9bdc 5d83f16 c14bbec ab2c04b 6e9c2dc 771c8ac c14bbec 86d9bdc 5d83f16 6e9c2dc ab2c04b 6e9c2dc ab2c04b 6e9c2dc ab2c04b 6e9c2dc 86d9bdc 2f31f7d 7c7d5e6 5a42d4a 834a92c f79125f ab2c04b 39f346a ab2c04b 2ea483c ab2c04b 2ea483c 2f31f7d 7c7d5e6 93913de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import streamlit as st
import numpy as np
import pandas as pd
import pymongo
import os
import time
st.set_page_config(layout="wide")
@st.cache_resource
def init_conn():
uri = os.getenv('mongo_uri')
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["MLB_Database"]
return db
db = init_conn()
st.markdown("""
<style>
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
padding: 4px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #DAA520;
color: white;
border-radius: 10px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stTabs [aria-selected="true"] {
background-color: #DAA520;
border: 3px solid #FFD700;
color: white;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #FFD700;
cursor: pointer;
}
div[data-baseweb="select"] > div {
background-color: #DAA520;
color: white;
}
div{
box-sizing: content-box !important;
}
</style>""", unsafe_allow_html=True)
def paginate_dataframe(df, page_size):
total_rows = len(df)
total_pages = (total_rows + page_size -1) // page_size
if 'current_page' not in st.session_state:
st.session_state['current_page'] = 0
start_idx = st.session_state['current_page'] * page_size
end_idx = start_idx + page_size
current_page_data = df.iloc[start_idx:end_idx]
return current_page_data, total_pages, total_rows
def display_paginated_table(df, page_size):
current_page_data, total_pages, total_rows = paginate_dataframe(df, page_size)
st.dataframe(current_page_data.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r').format(precision=2), height = 500, use_container_width = True, hide_index = True)
col1, col2, col3, col4 = st.columns([1, 2, 2, 1])
with col1:
if st.button('⏮️ First', disabled=st.session_state.current_page == 0):
st.session_state.current_page = 0
st.rerun()
with col2:
if st.button('⬅️ Previous', disabled=st.session_state.current_page == 0):
st.session_state.current_page -= 1
st.rerun()
with col3:
if st.button('Next ➡️', disabled=st.session_state.current_page >= total_pages - 1):
st.session_state.current_page += 1
st.rerun()
with col4:
if st.button('Last ⏭️', disabled=st.session_state.current_page >= total_pages - 1):
st.session_state.current_page = total_pages - 1
st.rerun()
@st.cache_resource(ttl = 61)
def init_baselines():
db_pulls = ['Bullpen_Data', 'Hitter_Agg_Merge', 'Hitter_Long_Merge', 'Hitter_Short_Merge', 'Pitcher_Agg_Merge', 'Pitcher_Long_Merge', 'Pitcher_Short_Merge',
'Slate_Hitters_Merge', 'Slate_Teams_Merge', 'Starting_Pitchers', 'True_AVG_Split', 'Pitcher_Info', 'Hitter_Info']
for table in db_pulls:
collection = db[table]
cursor = collection.find()
df = pd.DataFrame(cursor)
if table == 'Bullpen_Data':
try:
bp_data = df.drop(columns = ['_id'])
except:
bp_data = df
elif table == 'Hitter_Agg_Merge':
try:
hitter_agg = df.drop(columns = ['_id'])
except:
hitter_agg = df
elif table == 'Hitter_Long_Merge':
try:
hitter_long = df.drop(columns = ['_id'])
except:
hitter_long = df
elif table == 'Hitter_Short_Merge':
try:
hitter_short = df.drop(columns = ['_id'])
except:
hitter_short = df
elif table == 'Pitcher_Agg_Merge':
try:
pitcher_agg = df.drop(columns = ['_id'])
except:
pitcher_agg = df
elif table == 'Pitcher_Long_Merge':
try:
pitcher_long = df.drop(columns = ['_id'])
except:
pitcher_long = df
elif table == 'Pitcher_Short_Merge':
try:
pitcher_short = df.drop(columns = ['_id'])
except:
pitcher_short = df
elif table == 'Slate_Hitters_Merge':
try:
slate_hitters = df.drop(columns = ['_id'])
except:
slate_hitters = df
elif table == 'Slate_Teams_Merge':
try:
slate_team = df.drop(columns = ['_id'])
except:
slate_team = df
elif table == 'Starting_Pitchers':
try:
starting_pitchers = df.drop(columns = ['_id'])
except:
starting_pitchers = df
elif table == 'True_AVG_Split':
try:
true_avg_split = df.drop(columns = ['_id'])
except:
true_avg_split = df
elif table == 'Pitcher_Info':
try:
pitcher_info = df.drop(columns = ['_id'])
except:
pitcher_info = df
elif table == 'Hitter_Info':
try:
hitter_info = df.drop(columns = ['_id'])
except:
hitter_info = df
return bp_data, hitter_agg, hitter_long, hitter_short, pitcher_agg, pitcher_long, pitcher_short, slate_hitters, slate_team, starting_pitchers, true_avg_split, pitcher_info, hitter_info
bp_data, hitter_agg, hitter_long, hitter_short, pitcher_agg, pitcher_long, pitcher_short, slate_hitters, slate_team, starting_pitchers, true_avg_split, pitcher_info, hitter_info = init_baselines()
pitcher_tab, hitter_tab, team_tab = st.tabs(['Pitchers', 'Hitters', 'Team'])
with pitcher_tab:
with st.container(border = True):
st.info('Note: Splits options are available for all baseline tables, they do not apply to True AVG, HWSr, or the Overview tables')
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
site_var_sp = st.selectbox('Site', ['DraftKings', 'FanDuel'], key = 'site_var_sp')
with col2:
table_var_sp = st.selectbox('Table', ['True AVG Splits', 'HWSr Splits', 'Current Slate Overview', 'Active Baselines', 'League Aggregate Baselines', 'League Short Term Baselines', 'League Long Term Baselines'], key = 'table_var_sp')
with col3:
splits_var_sp = st.selectbox('Splits', ['RHH', 'LHH', 'Overall'], key = 'splits_var_sp')
with col4:
team_type_sp = st.selectbox('Do you want to view all teams or Specific ones?', ['All', 'Specific'], key = 'team_type_sp')
with col5:
if team_type_sp == 'Specific':
team_var_sp = st.multiselect('Select Teams', starting_pitchers['Team'].unique(), key = 'team_var_sp')
else:
team_var_sp = None
st.write('All teams selected')
if table_var_sp == 'True AVG Splits':
disp_raw = true_avg_split
if team_var_sp is not None:
disp_raw = disp_raw[disp_raw['Team'].isin(team_var_sp)]
disp_raw = disp_raw[['Player', 'Handedness', 'Team', 'Opp', 'Opp LHH', 'Opp RHH', 'True AVG (LHH)', 'True AVG (RHH)', 'True AVG (Overall)', 'Weighted True AVG']]
elif table_var_sp == 'HWSr Splits':
disp_raw = true_avg_split
if team_var_sp is not None:
disp_raw = disp_raw[disp_raw['Team'].isin(team_var_sp)]
disp_raw = disp_raw[['Player', 'Handedness', 'Team', 'Opp', 'Opp LHH', 'Opp RHH', 'HWSr (LHH)', 'HWSr (RHH)', 'HWSr (Overall)', 'Weighted HWSr']]
elif table_var_sp == 'Current Slate Overview':
disp_raw = starting_pitchers
disp_raw = disp_raw.drop(columns = ['Own Adj', 'Perf_Adj'])
if team_var_sp is not None:
disp_raw = disp_raw[disp_raw['Team'].isin(team_var_sp)]
elif table_var_sp == 'Active Baselines':
disp_raw = pitcher_info
if splits_var_sp != 'Overall':
disp_raw = disp_raw[disp_raw['Set'] == splits_var_sp]
else:
disp_raw = disp_raw[disp_raw['Set'] == 'RHH']
if team_var_sp is not None:
disp_raw = disp_raw[disp_raw['Team'].isin(team_var_sp)]
disp_raw = disp_raw[['Names', 'DK_Salary', 'FD_Salary', 'Team', 'Opp', 'Opp_TT', 'Hand', 'K%', 'BB%', 'True AVG', 'xSLG', 'xBA', 'Hits', 'xHRs', 'xHR/PA']]
positive_set = ['K%']
elif table_var_sp == 'League Aggregate Baselines':
disp_raw = pitcher_agg
disp_raw = disp_raw[disp_raw['Set'] == splits_var_sp]
disp_raw = disp_raw[['Player', 'PA', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'Strikeoutper', 'Strikeouts', 'Walkper', 'Walks', 'xBA', 'xSLG', 'xwOBA', 'BABIP', 'AVG', 'FB%', 'True_AVG', 'xHits', 'xHRs', 'xHR/PA', 'HWSr']]
elif table_var_sp == 'League Short Term Baselines':
disp_raw = pitcher_short
disp_raw = disp_raw[disp_raw['Set'] == splits_var_sp]
disp_raw = disp_raw[['Player', 'PA', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'Strikeoutper', 'Strikeouts', 'Walkper', 'Walks', 'xBA', 'xSLG', 'xwOBA', 'BABIP', 'AVG', 'FB%', 'True_AVG', 'xHits', 'xHRs', 'xHR/PA', 'HWSr']]
elif table_var_sp == 'League Long Term Baselines':
disp_raw = pitcher_long
disp_raw = disp_raw[disp_raw['Set'] == splits_var_sp]
disp_raw = disp_raw[['Player', 'PA', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'Strikeoutper', 'Strikeouts', 'Walkper', 'Walks', 'xBA', 'xSLG', 'xwOBA', 'BABIP', 'AVG', 'FB%', 'True_AVG', 'xHits', 'xHRs', 'xHR/PA', 'HWSr']]
st.session_state['sp_disp_frame'] = disp_raw
page_var = len(st.session_state['sp_disp_frame']) / 2
sp_disp_container = st.container(border = True)
sp_disp_container = sp_disp_container.empty()
if table_var_sp in (['League Aggregate Baselines', 'League Short Term Baselines', 'League Long Term Baselines']):
with st.spinner("Full league baselines can take some time to load"):
time.sleep(5)
display_paginated_table(st.session_state['sp_disp_frame'], 50)
else:
with sp_disp_container:
st.dataframe(st.session_state['sp_disp_frame'].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r').format(precision=2), height = 500, use_container_width = True, hide_index = True)
with hitter_tab:
with st.container(border = True):
st.info('Note: Splits options are available for all baseline tables')
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
site_var_hitter = st.selectbox('Site', ['Draftkings', 'Fanduel'], key = 'site_var_hitter')
with col2:
table_var_hitter = st.selectbox('Table', ['Current Slate Overview', 'Active Baselines', 'League Aggregate Baselines', 'League Short Term Baselines', 'League Long Term Baselines'], key = 'table_var_hitter')
with col3:
splits_var_hitter = st.selectbox('Splits', ['Overall', 'RHP', 'LHP'], key = 'splits_var_hitter')
with col4:
position_type_hitter = st.selectbox('Do you want to view all Positions or Specific ones?', ['All', 'Specific'], key = 'position_type_hitter')
if position_type_hitter == 'Specific':
position_var_hitter = st.multiselect('Positions', ['C', '1B', '2B', '3B', 'SS', 'OF'], key = 'position_var_hitter')
else:
position_var_hitter = None
st.write('All Positions selected')
with col5:
team_type_hitter = st.selectbox('Do you want to view all Teams or Specific ones?', ['All', 'Specific'], key = 'team_type_hitter')
if team_type_hitter == 'Specific':
team_var_hitter = st.multiselect('Select Teams', slate_hitters['Team'].unique(), key = 'team_var_hitter')
else:
team_var_hitter = None
st.write('All Teams selected')
if table_var_hitter == 'Current Slate Overview':
disp_raw = slate_hitters
if team_var_hitter is not None:
disp_raw = disp_raw[disp_raw['Team'].isin(team_var_hitter)]
if position_var_hitter:
position_mask = disp_raw['Position'].apply(lambda x: any(pos in x for pos in position_var_hitter))
disp_raw = disp_raw[position_mask]
disp_raw = disp_raw[disp_raw['Set'] == site_var_hitter]
elif table_var_hitter == 'Active Baselines':
disp_raw = hitter_info
if team_var_hitter is not None:
disp_raw = disp_raw[disp_raw['Team'].isin(team_var_hitter)]
if position_var_hitter:
position_mask = disp_raw['Position'].apply(lambda x: any(pos in x for pos in position_var_hitter))
disp_raw = disp_raw[position_mask]
disp_raw = disp_raw.drop(columns = ['DK_SD_Salary', 'FD_SD_Salary', 'DK_Own', 'FD_Own', 'DK_player_ID', 'FD_player_ID', 'Opp_TT'])
elif table_var_hitter == 'League Aggregate Baselines':
disp_raw = hitter_agg
if team_var_hitter is not None:
disp_raw = disp_raw[disp_raw['Team'].isin(team_var_hitter)]
elif table_var_hitter == 'League Short Term Baselines':
disp_raw = hitter_short
if team_var_hitter is not None:
disp_raw = disp_raw[disp_raw['Team'].isin(team_var_hitter)]
elif table_var_hitter == 'League Long Term Baselines':
disp_raw = hitter_long
if team_var_hitter is not None:
disp_raw = disp_raw[disp_raw['Team'].isin(team_var_hitter)]
st.session_state['hitter_disp_frame'] = disp_raw
hitter_disp_container = st.container(border = True)
hitter_disp_container = hitter_disp_container.empty()
with hitter_disp_container:
if table_var_hitter in (['League Aggregate Baselines', 'League Short Term Baselines', 'League Long Term Baselines']):
with st.spinner("Full league baselines can take some time to load"):
time.sleep(7)
display_paginated_table(st.session_state['hitter_disp_frame'], 50)
else:
st.dataframe(st.session_state['hitter_disp_frame'].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height = 750, use_container_width = True, hide_index = True)
with team_tab:
with st.container(border = True):
col1, col2, col3 = st.columns(3)
with col1:
site_var_team= st.selectbox('Site', ['DraftKings', 'FanDuel'], key = 'site_var_team')
with col2:
table_var_team = st.selectbox('Table', ['Team Baselines', 'Bullpen Baselines'], key = 'table_var_team')
if table_var_team == 'Team Baselines':
st.session_state['team_disp_frame'] = slate_team
elif table_var_team == 'Bullpen Baselines':
st.session_state['team_disp_frame'] = bp_data
team_disp_container = st.container(border = True)
team_disp_container = team_disp_container.empty()
with team_disp_container:
st.dataframe(st.session_state['team_disp_frame'].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height = 750, use_container_width = True, hide_index = True) |