import streamlit as st import numpy as np import pandas as pd import pymongo import os import time st.set_page_config(layout="wide") @st.cache_resource def init_conn(): uri = os.getenv('mongo_uri') client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) db = client["MLB_Database"] return db db = init_conn() st.markdown(""" """, unsafe_allow_html=True) def paginate_dataframe(df, page_size): total_rows = len(df) total_pages = (total_rows + page_size -1) // page_size if 'current_page' not in st.session_state: st.session_state['current_page'] = 0 start_idx = st.session_state['current_page'] * page_size end_idx = start_idx + page_size current_page_data = df.iloc[start_idx:end_idx] return current_page_data, total_pages, total_rows def display_paginated_table(df, page_size): current_page_data, total_pages, total_rows = paginate_dataframe(df, page_size) st.dataframe(current_page_data.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r').format(precision=2), height = 500, use_container_width = True, hide_index = True) col1, col2, col3, col4 = st.columns([1, 2, 2, 1]) with col1: if st.button('⏮️ First', disabled=st.session_state.current_page == 0): st.session_state.current_page = 0 st.rerun() with col2: if st.button('⬅️ Previous', disabled=st.session_state.current_page == 0): st.session_state.current_page -= 1 st.rerun() with col3: if st.button('Next ➡️', disabled=st.session_state.current_page >= total_pages - 1): st.session_state.current_page += 1 st.rerun() with col4: if st.button('Last ⏭️', disabled=st.session_state.current_page >= total_pages - 1): st.session_state.current_page = total_pages - 1 st.rerun() @st.cache_resource(ttl = 61) def init_baselines(): db_pulls = ['Bullpen_Data', 'Hitter_Agg_Merge', 'Hitter_Long_Merge', 'Hitter_Short_Merge', 'Pitcher_Agg_Merge', 'Pitcher_Long_Merge', 'Pitcher_Short_Merge', 'Slate_Hitters_Merge', 'Slate_Teams_Merge', 'Starting_Pitchers', 'True_AVG_Split', 'Pitcher_Info', 'Hitter_Info'] for table in db_pulls: collection = db[table] cursor = collection.find() df = pd.DataFrame(cursor) if table == 'Bullpen_Data': try: bp_data = df.drop(columns = ['_id']) except: bp_data = df elif table == 'Hitter_Agg_Merge': try: hitter_agg = df.drop(columns = ['_id']) except: hitter_agg = df elif table == 'Hitter_Long_Merge': try: hitter_long = df.drop(columns = ['_id']) except: hitter_long = df elif table == 'Hitter_Short_Merge': try: hitter_short = df.drop(columns = ['_id']) except: hitter_short = df elif table == 'Pitcher_Agg_Merge': try: pitcher_agg = df.drop(columns = ['_id']) except: pitcher_agg = df elif table == 'Pitcher_Long_Merge': try: pitcher_long = df.drop(columns = ['_id']) except: pitcher_long = df elif table == 'Pitcher_Short_Merge': try: pitcher_short = df.drop(columns = ['_id']) except: pitcher_short = df elif table == 'Slate_Hitters_Merge': try: slate_hitters = df.drop(columns = ['_id']) except: slate_hitters = df elif table == 'Slate_Teams_Merge': try: slate_team = df.drop(columns = ['_id']) except: slate_team = df elif table == 'Starting_Pitchers': try: starting_pitchers = df.drop(columns = ['_id']) except: starting_pitchers = df elif table == 'True_AVG_Split': try: true_avg_split = df.drop(columns = ['_id']) except: true_avg_split = df elif table == 'Pitcher_Info': try: pitcher_info = df.drop(columns = ['_id']) except: pitcher_info = df elif table == 'Hitter_Info': try: hitter_info = df.drop(columns = ['_id']) except: hitter_info = df return bp_data, hitter_agg, hitter_long, hitter_short, pitcher_agg, pitcher_long, pitcher_short, slate_hitters, slate_team, starting_pitchers, true_avg_split, pitcher_info, hitter_info bp_data, hitter_agg, hitter_long, hitter_short, pitcher_agg, pitcher_long, pitcher_short, slate_hitters, slate_team, starting_pitchers, true_avg_split, pitcher_info, hitter_info = init_baselines() pitcher_tab, hitter_tab, team_tab = st.tabs(['Pitchers', 'Hitters', 'Team']) with pitcher_tab: with st.container(border = True): st.info('Note: Splits options are available for all baseline tables, they do not apply to True AVG, HWSr, or the Overview tables') col1, col2, col3, col4, col5 = st.columns(5) with col1: site_var_sp = st.selectbox('Site', ['DraftKings', 'FanDuel'], key = 'site_var_sp') with col2: table_var_sp = st.selectbox('Table', ['True AVG Splits', 'HWSr Splits', 'Current Slate Overview', 'Active Baselines', 'League Aggregate Baselines', 'League Short Term Baselines', 'League Long Term Baselines'], key = 'table_var_sp') with col3: splits_var_sp = st.selectbox('Splits', ['RHH', 'LHH', 'Overall'], key = 'splits_var_sp') with col4: team_type_sp = st.selectbox('Do you want to view all teams or Specific ones?', ['All', 'Specific'], key = 'team_type_sp') with col5: if team_type_sp == 'Specific': team_var_sp = st.multiselect('Select Teams', starting_pitchers['Team'].unique(), key = 'team_var_sp') else: team_var_sp = None st.write('All teams selected') if table_var_sp == 'True AVG Splits': disp_raw = true_avg_split if team_var_sp is not None: disp_raw = disp_raw[disp_raw['Team'].isin(team_var_sp)] disp_raw = disp_raw[['Player', 'Handedness', 'Team', 'Opp', 'Opp LHH', 'Opp RHH', 'True AVG (LHH)', 'True AVG (RHH)', 'True AVG (Overall)', 'Weighted True AVG']] elif table_var_sp == 'HWSr Splits': disp_raw = true_avg_split if team_var_sp is not None: disp_raw = disp_raw[disp_raw['Team'].isin(team_var_sp)] disp_raw = disp_raw[['Player', 'Handedness', 'Team', 'Opp', 'Opp LHH', 'Opp RHH', 'HWSr (LHH)', 'HWSr (RHH)', 'HWSr (Overall)', 'Weighted HWSr']] elif table_var_sp == 'Current Slate Overview': disp_raw = starting_pitchers disp_raw = disp_raw.drop(columns = ['Own Adj', 'Perf_Adj']) if team_var_sp is not None: disp_raw = disp_raw[disp_raw['Team'].isin(team_var_sp)] elif table_var_sp == 'Active Baselines': disp_raw = pitcher_info if splits_var_sp != 'Overall': disp_raw = disp_raw[disp_raw['Set'] == splits_var_sp] else: disp_raw = disp_raw[disp_raw['Set'] == 'RHH'] if team_var_sp is not None: disp_raw = disp_raw[disp_raw['Team'].isin(team_var_sp)] disp_raw = disp_raw[['Names', 'DK_Salary', 'FD_Salary', 'Team', 'Opp', 'Opp_TT', 'Hand', 'K%', 'BB%', 'True AVG', 'xSLG', 'xBA', 'Hits', 'xHRs', 'xHR/PA']] positive_set = ['K%'] elif table_var_sp == 'League Aggregate Baselines': disp_raw = pitcher_agg disp_raw = disp_raw[disp_raw['Set'] == splits_var_sp] disp_raw = disp_raw[['Player', 'PA', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'Strikeoutper', 'Strikeouts', 'Walkper', 'Walks', 'xBA', 'xSLG', 'xwOBA', 'BABIP', 'AVG', 'FB%', 'True_AVG', 'xHits', 'xHRs', 'xHR/PA', 'HWSr']] elif table_var_sp == 'League Short Term Baselines': disp_raw = pitcher_short disp_raw = disp_raw[disp_raw['Set'] == splits_var_sp] disp_raw = disp_raw[['Player', 'PA', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'Strikeoutper', 'Strikeouts', 'Walkper', 'Walks', 'xBA', 'xSLG', 'xwOBA', 'BABIP', 'AVG', 'FB%', 'True_AVG', 'xHits', 'xHRs', 'xHR/PA', 'HWSr']] elif table_var_sp == 'League Long Term Baselines': disp_raw = pitcher_long disp_raw = disp_raw[disp_raw['Set'] == splits_var_sp] disp_raw = disp_raw[['Player', 'PA', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'Strikeoutper', 'Strikeouts', 'Walkper', 'Walks', 'xBA', 'xSLG', 'xwOBA', 'BABIP', 'AVG', 'FB%', 'True_AVG', 'xHits', 'xHRs', 'xHR/PA', 'HWSr']] st.session_state['sp_disp_frame'] = disp_raw page_var = len(st.session_state['sp_disp_frame']) / 2 sp_disp_container = st.container(border = True) sp_disp_container = sp_disp_container.empty() if table_var_sp in (['League Aggregate Baselines', 'League Short Term Baselines', 'League Long Term Baselines']): with st.spinner("Full league baselines can take some time to load"): time.sleep(5) display_paginated_table(st.session_state['sp_disp_frame'], 50) else: with sp_disp_container: st.dataframe(st.session_state['sp_disp_frame'].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r').format(precision=2), height = 500, use_container_width = True, hide_index = True) with hitter_tab: with st.container(border = True): st.info('Note: Splits options are available for all baseline tables') col1, col2, col3, col4, col5 = st.columns(5) with col1: site_var_hitter = st.selectbox('Site', ['Draftkings', 'Fanduel'], key = 'site_var_hitter') with col2: table_var_hitter = st.selectbox('Table', ['Current Slate Overview', 'Active Baselines', 'League Aggregate Baselines', 'League Short Term Baselines', 'League Long Term Baselines'], key = 'table_var_hitter') with col3: splits_var_hitter = st.selectbox('Splits', ['Overall', 'RHP', 'LHP'], key = 'splits_var_hitter') with col4: position_type_hitter = st.selectbox('Do you want to view all Positions or Specific ones?', ['All', 'Specific'], key = 'position_type_hitter') if position_type_hitter == 'Specific': position_var_hitter = st.multiselect('Positions', ['C', '1B', '2B', '3B', 'SS', 'OF'], key = 'position_var_hitter') else: position_var_hitter = None st.write('All Positions selected') with col5: team_type_hitter = st.selectbox('Do you want to view all Teams or Specific ones?', ['All', 'Specific'], key = 'team_type_hitter') if team_type_hitter == 'Specific': team_var_hitter = st.multiselect('Select Teams', slate_hitters['Team'].unique(), key = 'team_var_hitter') else: team_var_hitter = None st.write('All Teams selected') if table_var_hitter == 'Current Slate Overview': disp_raw = slate_hitters if team_var_hitter is not None: disp_raw = disp_raw[disp_raw['Team'].isin(team_var_hitter)] if position_var_hitter: position_mask = disp_raw['Position'].apply(lambda x: any(pos in x for pos in position_var_hitter)) disp_raw = disp_raw[position_mask] disp_raw = disp_raw[disp_raw['Set'] == site_var_hitter] elif table_var_hitter == 'Active Baselines': disp_raw = hitter_info if team_var_hitter is not None: disp_raw = disp_raw[disp_raw['Team'].isin(team_var_hitter)] if position_var_hitter: position_mask = disp_raw['Position'].apply(lambda x: any(pos in x for pos in position_var_hitter)) disp_raw = disp_raw[position_mask] disp_raw = disp_raw.drop(columns = ['DK_SD_Salary', 'FD_SD_Salary', 'DK_Own', 'FD_Own', 'DK_player_ID', 'FD_player_ID', 'Opp_TT']) elif table_var_hitter == 'League Aggregate Baselines': disp_raw = hitter_agg if team_var_hitter is not None: disp_raw = disp_raw[disp_raw['Team'].isin(team_var_hitter)] elif table_var_hitter == 'League Short Term Baselines': disp_raw = hitter_short if team_var_hitter is not None: disp_raw = disp_raw[disp_raw['Team'].isin(team_var_hitter)] elif table_var_hitter == 'League Long Term Baselines': disp_raw = hitter_long if team_var_hitter is not None: disp_raw = disp_raw[disp_raw['Team'].isin(team_var_hitter)] st.session_state['hitter_disp_frame'] = disp_raw hitter_disp_container = st.container(border = True) hitter_disp_container = hitter_disp_container.empty() with hitter_disp_container: if table_var_hitter in (['League Aggregate Baselines', 'League Short Term Baselines', 'League Long Term Baselines']): with st.spinner("Full league baselines can take some time to load"): time.sleep(7) display_paginated_table(st.session_state['hitter_disp_frame'], 50) else: st.dataframe(st.session_state['hitter_disp_frame'].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height = 750, use_container_width = True, hide_index = True) with team_tab: with st.container(border = True): col1, col2, col3 = st.columns(3) with col1: site_var_team= st.selectbox('Site', ['DraftKings', 'FanDuel'], key = 'site_var_team') with col2: table_var_team = st.selectbox('Table', ['Team Baselines', 'Bullpen Baselines'], key = 'table_var_team') if table_var_team == 'Team Baselines': st.session_state['team_disp_frame'] = slate_team elif table_var_team == 'Bullpen Baselines': st.session_state['team_disp_frame'] = bp_data team_disp_container = st.container(border = True) team_disp_container = team_disp_container.empty() with team_disp_container: st.dataframe(st.session_state['team_disp_frame'].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height = 750, use_container_width = True, hide_index = True)