diff --git "a/app.py" "b/app.py" new file mode 100644--- /dev/null +++ "b/app.py" @@ -0,0 +1,1765 @@ +import streamlit as st +st.set_page_config(layout="wide") + +for name in dir(): + if not name.startswith('_'): + del globals()[name] + +import pulp +import numpy as np +import pandas as pd +import streamlit as st +import pymongo +from itertools import combinations + +@st.cache_resource +def init_conn(): + uri = st.secrets['mongo_uri'] + client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) + db = client["NFL_Database"] + + return db + +db = init_conn() + +game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}', + 'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'} + +player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}', + '4x%': '{:.2%}','GPP%': '{:.2%}'} + +dk_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] +fd_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] + +@st.cache_resource(ttl=60) +def player_stat_table(): + + collection = db["Player_Baselines"] + cursor = collection.find() + + raw_display = pd.DataFrame(list(cursor)) + raw_display = raw_display[['name', 'Team', 'Opp', 'Position', 'Salary', 'team_plays', 'team_pass', 'team_rush', 'team_tds', 'team_pass_tds', 'team_rush_tds', 'dropbacks', 'pass_yards', 'pass_tds', + 'rush_att', 'rush_yards', 'rush_tds', 'targets', 'rec', 'rec_yards', 'rec_tds', 'PPR', 'Half_PPR', 'Own']] + player_stats = raw_display[raw_display['Position'] != 'K'] + + collection = db["DK_NFL_ROO"] + cursor = collection.find() + + raw_display = pd.DataFrame(list(cursor)) + raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', + 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']] + load_display = raw_display[raw_display['Position'] != 'K'] + dk_roo_raw = load_display.dropna(subset=['Median']) + + collection = db["FD_NFL_ROO"] + cursor = collection.find() + + raw_display = pd.DataFrame(list(cursor)) + raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', + 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']] + load_display = raw_display[raw_display['Position'] != 'K'] + fd_roo_raw = load_display.dropna(subset=['Median']) + + collection = db["DK_DFS_Stacks"] + cursor = collection.find() + + raw_display = pd.DataFrame(list(cursor)) + raw_display = raw_display[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX', 'slate', 'version']] + dk_stacks_raw = raw_display.copy() + + collection = db["FD_DFS_Stacks"] + cursor = collection.find() + + raw_display = pd.DataFrame(list(cursor)) + raw_display = raw_display[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX', 'slate', 'version']] + fd_stacks_raw = raw_display.copy() + + return player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw + +@st.cache_resource(ttl = 60) +def init_DK_lineups(): + + collection = db["DK_NFL_seed_frame"] + cursor = collection.find().limit(10000) + + raw_display = pd.DataFrame(list(cursor)) + raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] + DK_seed = raw_display.to_numpy() + + return DK_seed + +@st.cache_resource(ttl = 60) +def init_FD_lineups(): + + collection = db["FD_NFL_seed_frame"] + cursor = collection.find().limit(10000) + + raw_display = pd.DataFrame(list(cursor)) + raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] + FD_seed = raw_display.to_numpy() + + return FD_seed + +@st.cache_data +def convert_df(array): + array = pd.DataFrame(array, columns=column_names) + return array.to_csv().encode('utf-8') + +@st.cache_data +def convert_df_to_csv(df): + return df.to_csv().encode('utf-8') + +player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = player_stat_table() +try: + dk_lineups = init_DK_lineups() + fd_lineups = init_FD_lineups() +except: + dk_lineups = pd.DataFrame(columns=dk_columns) + fd_lineups = pd.DataFrame(columns=fd_columns) + +t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST" + +tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(["Team Stacks Range of Outcomes", "Overall Range of Outcomes", "QB Range of Outcomes", "RB Range of Outcomes", "WR Range of Outcomes", "TE Range of Outcomes", "Optimals"]) + +# ... existing code ... + +@st.cache_data +def optimize_lineup(player_data, sidebar_site): + """ + Creates optimal lineup based on median projections while respecting position and salary constraints + """ + # Create optimization problem + prob = pulp.LpProblem("NFL_Lineup_Optimization", pulp.LpMaximize) + + # Create player dictionary with binary variables + players = {} + for idx, row in player_data.iterrows(): + players[row['Player']] = pulp.LpVariable(f"player_{idx}", 0, 1, pulp.LpBinary) + + # Objective: Maximize total median points + prob += pulp.lpSum([players[row['Player']] * row['Median'] for idx, row in player_data.iterrows()]) + + # Constraint: Salary cap + if sidebar_site == 'Draftkings': + prob += pulp.lpSum([players[row['Player']] * row['Salary'] for idx, row in player_data.iterrows()]) <= 50000 + elif sidebar_site == 'Fanduel': + prob += pulp.lpSum([players[row['Player']] * row['Salary'] for idx, row in player_data.iterrows()]) <= 60000 + + # Constraint: 9 players + prob += pulp.lpSum([players[row['Player']] for idx, row in player_data.iterrows()]) == 9 + + # Position constraints + qbs = player_data[player_data['Position'] == 'QB']['Player'].tolist() + rbs = player_data[player_data['Position'] == 'RB']['Player'].tolist() + wrs = player_data[player_data['Position'] == 'WR']['Player'].tolist() + tes = player_data[player_data['Position'] == 'TE']['Player'].tolist() + dsts = player_data[player_data['Position'] == 'DST']['Player'].tolist() + + # QB: exactly 1 + prob += pulp.lpSum([players[p] for p in qbs]) == 1 + + # RB: 2-3 + prob += pulp.lpSum([players[p] for p in rbs]) >= 2 + prob += pulp.lpSum([players[p] for p in rbs]) <= 3 + + # WR: 3-4 + prob += pulp.lpSum([players[p] for p in wrs]) >= 3 + prob += pulp.lpSum([players[p] for p in wrs]) <= 4 + + # TE: 1-2 + prob += pulp.lpSum([players[p] for p in tes]) >= 1 + prob += pulp.lpSum([players[p] for p in tes]) <= 2 + + # DST: exactly 1 + prob += pulp.lpSum([players[p] for p in dsts]) == 1 + + # Solve the problem + prob.solve() + + # Get selected players + selected_players = [] + total_salary = 0 + total_median = 0 + + for idx, row in player_data.iterrows(): + if players[row['Player']].value() == 1: + selected_players.append({ + 'Player': row['Player'], + 'Position': row['Position'], + 'Salary': row['Salary'], + 'Median': row['Median'] + }) + total_salary += row['Salary'] + total_median += row['Median'] + + return selected_players, total_salary, total_median + +with st.sidebar: + st.header("Quick Builder") + + sidebar_site = st.selectbox("What site are you running?", ('Draftkings', 'Fanduel'), key='sidebar_site') + sidebar_slate = st.selectbox("What slate are you running?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='sidebar_slate') + + if sidebar_site == 'Draftkings': + roo_sample = dk_roo_raw[dk_roo_raw['slate'] == str(sidebar_slate)] + roo_sample = roo_sample[roo_sample['version'] == 'overall'] + #roo_sample = roo_sample.sort_values(by='Own', ascending=False) + elif sidebar_site == 'Fanduel': + roo_sample = fd_roo_raw[fd_roo_raw['slate'] == str(sidebar_slate)] + roo_sample = roo_sample[roo_sample['version'] == 'overall'] + #roo_sample = roo_sample.sort_values(by='Own', ascending=False) + + st.write("---") + if st.button("Generate Optimal Lineup"): + if sidebar_site == 'Draftkings': + roo_data = dk_roo_raw[dk_roo_raw['slate'] == str(sidebar_slate)] + roo_data = roo_data[roo_data['version'] == 'overall'] + else: + roo_data = fd_roo_raw[fd_roo_raw['slate'] == str(sidebar_slate)] + roo_data = roo_data[roo_data['version'] == 'overall'] + + optimal_players, total_salary, total_median = optimize_lineup(roo_data, sidebar_site) + + st.write("Optimal Lineup:") + + # Sort players into position groups + qb = [p for p in optimal_players if p['Position'] == 'QB'][0] + rbs = [p for p in optimal_players if p['Position'] == 'RB'] + wrs = [p for p in optimal_players if p['Position'] == 'WR'] + tes = [p for p in optimal_players if p['Position'] == 'TE'] + dst = [p for p in optimal_players if p['Position'] == 'DST'][0] + + # Display QB + st.write(f"QB: {qb['Player']} (${qb['Salary']:,})") + + # Display RB1 and RB2 + st.write(f"RB: {rbs[0]['Player']} (${rbs[0]['Salary']:,})") + st.write(f"RB: {rbs[1]['Player']} (${rbs[1]['Salary']:,})") + + # Display WR1, WR2, WR3 + st.write(f"WR: {wrs[0]['Player']} (${wrs[0]['Salary']:,})") + st.write(f"WR: {wrs[1]['Player']} (${wrs[1]['Salary']:,})") + st.write(f"WR: {wrs[2]['Player']} (${wrs[2]['Salary']:,})") + + # Display TE1 + st.write(f"TE: {tes[0]['Player']} (${tes[0]['Salary']:,})") + + # Display FLEX (either RB3, WR4, or TE2) + if len(rbs) > 2: + st.write(f"FLEX (RB): {rbs[2]['Player']} (${rbs[2]['Salary']:,})") + elif len(wrs) > 3: + st.write(f"FLEX (WR): {wrs[3]['Player']} (${wrs[3]['Salary']:,})") + elif len(tes) > 1: + st.write(f"FLEX (TE): {tes[1]['Player']} (${tes[1]['Salary']:,})") + + # Display DST + st.write(f"DST: {dst['Player']} (${dst['Salary']:,})") + + st.write(f"Total Salary: ${total_salary:,}") + st.write(f"Projected Points: {total_median:.2f}") + + # Create empty lists to store selected players + selected_qbs = [] + selected_rb1 = [] + selected_rb2 = [] + selected_wr1 = [] + selected_wr2 = [] + selected_wr3 = [] + selected_te = [] + selected_flex = [] + selected_dst = [] + + # Get unique players by position from dk_roo_raw + qbs = roo_sample[roo_sample['Position'] == 'QB']['Player'].unique() + rbs = roo_sample[roo_sample['Position'] == 'RB']['Player'].unique() + wrs = roo_sample[roo_sample['Position'] == 'WR']['Player'].unique() + tes = roo_sample[roo_sample['Position'] == 'TE']['Player'].unique() + flex = roo_sample['Player'].unique() + dst = roo_sample[roo_sample['Position'] == 'DST']['Player'].unique() + # Create multiselect dropdowns for each position + selected_qbs = st.multiselect('Select QB:', list(qbs), default=None, key='qb1') + if selected_qbs: + qb_team = roo_sample[roo_sample['Player'] == selected_qbs[0]]['Team'].values[0] + qb_sample = roo_sample[roo_sample['Team'] == qb_team] + bb_sample = roo_sample[roo_sample['Opp'] == qb_team] + wr_suggest = qb_sample[qb_sample['Position'] == 'WR']['Player'].values[0] + wr2_suggest = bb_sample[bb_sample['Position'] == 'WR']['Player'].values[0] + te_suggest = qb_sample[qb_sample['Position'] == 'TE']['Player'].values[0] + selected_rb1 = st.multiselect('Select RBs:', list(rbs), default=None, key='rb1') + selected_rb2 = st.multiselect('Select RB2:', list(rbs), default=None, label_visibility='collapsed', key='rb2') + if selected_qbs: + selected_wr1 = st.multiselect('Select WRs:', list(wrs), default=None, placeholder=f'Suggestion: {wr_suggest}', key='wr1') + else: + selected_wr1 = st.multiselect('Select WRs:', list(wrs), default=None, key='wr1') + if selected_qbs: + selected_wr2 = st.multiselect('Select WR2:', list(wrs), default=None, placeholder=f'Suggestion: {wr2_suggest}', label_visibility='collapsed', key='wr2') + else: + selected_wr2 = st.multiselect('Select WR2:', list(wrs), default=None, label_visibility='collapsed', key='wr2') + selected_wr3 = st.multiselect('Select WR3:', list(wrs), default=None, label_visibility='collapsed', key='wr3') + if selected_qbs: + selected_te = st.multiselect('Select TE:', list(tes), default=None, placeholder=f'Suggestion: {te_suggest}', key='te') + else: + selected_te = st.multiselect('Select TE:', list(tes), default=None, key='te') + selected_flex = st.multiselect('Select Flex:', list(flex), default=None, key='flex') + selected_dst = st.multiselect('Select DST:', list(dst), default=None, key='dst') + + # Combine all selected players + all_selected = selected_qbs + selected_rb1 + selected_rb2 + selected_wr1 + selected_wr2 + selected_wr3 + selected_te + selected_flex + selected_dst + + if all_selected: + # Get stats for selected players + selected_stats = roo_sample[roo_sample['Player'].isin(all_selected)] + + # Calculate sums + salary_sum = selected_stats['Salary'].sum() + median_sum = selected_stats['Median'].sum() + own_sum = selected_stats['Own'].sum() + levx_sum = selected_stats['LevX'].sum() + + # Display sums + st.write('---') + if sidebar_site == 'Draftkings': + if salary_sum > 50000: + st.warning(f'Total Salary: ${salary_sum:.2f} exceeds limit of $50,000') + else: + st.write(f'Total Salary: ${salary_sum:.2f}') + elif sidebar_site == 'Fanduel': + if salary_sum > 60000: + st.warning(f'Total Salary: ${salary_sum:.2f} exceeds limit of $60,000') + else: + st.write(f'Total Salary: ${salary_sum:.2f}') + st.write(f'Total Median: {median_sum:.2f}') + st.write(f'Total Ownership: {own_sum:.2f}%') + st.write(f'Total LevX: {levx_sum:.2f}') + +with tab1: + col1, col2 = st.columns([1, 5]) + with col1: + st.info(t_stamp) + if st.button("Load/Reset Data", key='reset1'): + st.cache_data.clear() + player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = player_stat_table() + dk_lineups = init_DK_lineups() + fd_lineups = init_FD_lineups() + t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST" + for key in st.session_state.keys(): + del st.session_state[key] + slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var1') + site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1') + view_var1 = st.radio("What view would you like to display?", ('Advanced', 'Simple'), key='view_var1') + custom_var1 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var1') + if custom_var1 == 'No': + if site_var1 == 'Draftkings': + raw_baselines = dk_stacks_raw[dk_stacks_raw['slate'] == str(slate_var1)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'overall'] + raw_baselines = raw_baselines.iloc[:,:-2] + elif site_var1 == 'Fanduel': + raw_baselines = fd_stacks_raw[fd_stacks_raw['slate'] == str(slate_var1)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'overall'] + raw_baselines = raw_baselines.iloc[:,:-2] + split_var1 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var1') + if split_var1 == 'Specific Games': + team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var1') + elif split_var1 == 'Full Slate Run': + team_var1 = raw_baselines.Team.values.tolist() + if custom_var1 == 'Yes': + contest_var1 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var1') + if site_var1 == 'Draftkings': + raw_baselines = dk_stacks_raw[dk_stacks_raw['slate'] == str(slate_var1)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'overall'] + elif site_var1 == 'Fanduel': + raw_baselines = fd_stacks_raw[fd_stacks_raw['slate'] == str(slate_var1)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'overall'] + split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1') + if split_var1 == 'Specific Games': + team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var1') + elif split_var1 == 'Full Slate Run': + team_var1 = raw_baselines.Team.values.tolist() + + + with col2: + if custom_var1 == 'No': + final_stacks = raw_baselines[raw_baselines['Team'].isin(team_var1)] + if view_var1 == 'Simple': + final_stacks = final_stacks[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Salary', 'Median', '60+%', '4x%']] + elif view_var1 == 'Advanced': + final_stacks = final_stacks[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', + 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX']] + st.dataframe(final_stacks.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True) + st.download_button( + label="Export Tables", + data=convert_df_to_csv(final_stacks), + file_name='NFL_stacks_export.csv', + mime='text/csv', + ) + elif custom_var1 == 'Yes': + hold_container = st.empty() + if st.button('Create Range of Outcomes for Slate'): + with hold_container: + if site_var1 == 'Draftkings': + working_roo = player_stats + working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True) + working_roo.replace('', 0, inplace=True) + if site_var1 == 'Fanduel': + working_roo = player_stats + working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True) + working_roo.replace('', 0, inplace=True) + working_roo = working_roo[working_roo['Team'].isin(team_var1)] + + total_sims = 1000 + + salary_dict = dict(zip(working_roo.name, working_roo.Salary)) + own_dict = dict(zip(working_roo.name, working_roo.Own)) + fantasy_dict = dict(zip(working_roo.name, working_roo.Fantasy)) + + QB_group = working_roo.loc[working_roo['Position'] == 'QB'] + stacks_df = pd.DataFrame(columns=['Team','QB', 'WR1', 'WR2_TE']) + + for stack in range(0,len(QB_group)): + team_var = QB_group.iat[stack,1] + WR_group_1 = working_roo.loc[working_roo['Position'] == 'WR'] + WR_group_2 = WR_group_1.loc[working_roo['Team'] == team_var] + TE_group_1 = working_roo.loc[working_roo['Position'] == 'TE'] + TE_group_2 = TE_group_1.loc[working_roo['Team'] == team_var] + cur_list = [] + qb_piece = QB_group.iat[stack,0] + wr_piece = WR_group_2.iat[0,0] + te_piece = TE_group_2.iat[0,0] + cur_list.append(team_var) + cur_list.append(qb_piece) + cur_list.append(wr_piece) + cur_list.append(te_piece) + stacks_df.loc[len(stacks_df)] = cur_list + cur_list = [] + qb_piece = QB_group.iat[stack,0] + wr_piece = WR_group_2.iat[1,0] + te_piece = TE_group_2.iat[0,0] + cur_list.append(team_var) + cur_list.append(qb_piece) + cur_list.append(wr_piece) + cur_list.append(te_piece) + stacks_df.loc[len(stacks_df)] = cur_list + cur_list = [] + qb_piece = QB_group.iat[stack,0] + wr_piece = WR_group_2.iat[0,0] + te_piece = WR_group_2.iat[1,0] + cur_list.append(team_var) + cur_list.append(qb_piece) + cur_list.append(wr_piece) + cur_list.append(te_piece) + stacks_df.loc[len(stacks_df)] = cur_list + + stacks_df['Salary'] = sum([stacks_df['QB'].map(salary_dict), + stacks_df['WR1'].map(salary_dict), + stacks_df['WR2_TE'].map(salary_dict)]) + + stacks_df['Fantasy'] = sum([stacks_df['QB'].map(fantasy_dict), + stacks_df['WR1'].map(fantasy_dict), + stacks_df['WR2_TE'].map(fantasy_dict)]) + + stacks_df['Own'] = sum([stacks_df['QB'].map(own_dict), + stacks_df['WR1'].map(own_dict), + stacks_df['WR2_TE'].map(own_dict)]) + + stacks_df['team_combo'] = stacks_df['Team'] + " " + stacks_df['QB'] + " " + stacks_df['WR1'] + " " + stacks_df['WR2_TE'] + + own_dict = dict(zip(stacks_df.team_combo, stacks_df.Own)) + qb_dict = dict(zip(stacks_df.team_combo, stacks_df.QB)) + wr1_dict = dict(zip(stacks_df.team_combo, stacks_df.WR1)) + wr2_dict = dict(zip(stacks_df.team_combo, stacks_df.WR2_TE)) + team_dict = dict(zip(stacks_df.team_combo, stacks_df.Team)) + + flex_file = stacks_df[['team_combo', 'Salary', 'Fantasy']] + flex_file.rename(columns={"Fantasy": "Median"}, inplace = True) + flex_file['Floor'] = flex_file['Median']*.25 + flex_file['Ceiling'] = flex_file['Median'] + flex_file['Floor'] + flex_file['STD'] = flex_file['Median']/4 + flex_file = flex_file[['team_combo', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']] + hold_file = flex_file + overall_file = flex_file + salary_file = flex_file + + overall_players = overall_file[['team_combo']] + + for x in range(0,total_sims): + salary_file[x] = salary_file['Salary'] + + salary_file=salary_file.drop(['team_combo', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) + salary_file.astype('int').dtypes + + salary_file = salary_file.div(1000) + + for x in range(0,total_sims): + overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD']) + + overall_file=overall_file.drop(['team_combo', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) + overall_file.astype('int').dtypes + + players_only = hold_file[['team_combo']] + raw_lineups_file = players_only + + for x in range(0,total_sims): + maps_dict = {'proj_map':dict(zip(hold_file.team_combo,hold_file[x]))} + raw_lineups_file[x] = sum([raw_lineups_file['team_combo'].map(maps_dict['proj_map'])]) + players_only[x] = raw_lineups_file[x].rank(ascending=False) + + players_only=players_only.drop(['team_combo'], axis=1) + players_only.astype('int').dtypes + + salary_2x_check = (overall_file - (salary_file*2)) + salary_3x_check = (overall_file - (salary_file*3)) + salary_4x_check = (overall_file - (salary_file*4)) + + players_only['Average_Rank'] = players_only.mean(axis=1) + players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims + players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims + players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims + players_only['60+%'] = overall_file[overall_file >= 60].count(axis=1)/float(total_sims) + players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims) + players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims) + players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims) + + players_only['team_combo'] = hold_file[['team_combo']] + + final_outcomes = players_only[['team_combo', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%']] + + final_stacks = pd.merge(hold_file, final_outcomes, on="team_combo") + final_stacks = final_stacks[['team_combo', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%']] + final_stacks['Own'] = final_stacks['team_combo'].map(own_dict) + final_stacks = final_stacks[['team_combo', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own']] + final_stacks['Projection Rank'] = final_stacks.Median.rank(pct = True) + final_stacks['Own Rank'] = final_stacks.Own.rank(pct = True) + final_stacks['LevX'] = final_stacks['Projection Rank'] - final_stacks['Own Rank'] + final_stacks['Team'] = final_stacks['team_combo'].map(team_dict) + final_stacks['QB'] = final_stacks['team_combo'].map(qb_dict) + final_stacks['WR1_TE'] = final_stacks['team_combo'].map(wr1_dict) + final_stacks['WR2_TE'] = final_stacks['team_combo'].map(wr2_dict) + + final_stacks = final_stacks[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', + 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX']] + + final_stacks = final_stacks.sort_values(by='Median', ascending=False) + + with hold_container: + hold_container = st.empty() + final_stacks = final_stacks + if view_var1 == 'Simple': + final_stacks = final_stacks[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Salary', 'Median', '60+%', '4x%']] + elif view_var1 == 'Advanced': + final_stacks = final_stacks[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', + 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX']] + st.dataframe(final_stacks.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True) + + st.download_button( + label="Export Tables", + data=convert_df_to_csv(final_stacks), + file_name='Custom_NFL_stacks_export.csv', + mime='text/csv', + ) + +with tab2: + col1, col2 = st.columns([1, 5]) + with col1: + st.info(t_stamp) + if st.button("Load/Reset Data", key='reset2'): + st.cache_data.clear() + player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = player_stat_table() + dk_lineups = init_DK_lineups() + fd_lineups = init_FD_lineups() + t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST" + for key in st.session_state.keys(): + del st.session_state[key] + slate_var2 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var2') + site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2') + view_var2 = st.radio("What view would you like to display?", ('Advanced', 'Simple'), key='view_var2') + custom_var2 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var2') + if custom_var2 == 'No': + if site_var2 == 'Draftkings': + raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var2)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'overall'] + raw_baselines = raw_baselines.iloc[:,:-2] + elif site_var2 == 'Fanduel': + raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var2)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'overall'] + raw_baselines = raw_baselines.iloc[:,:-2] + split_var2 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var2') + if split_var2 == 'Specific Games': + team_var2 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var2') + elif split_var2 == 'Full Slate Run': + team_var2 = raw_baselines.Team.values.tolist() + pos_split2 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split2') + if pos_split2 == 'Specific Positions': + pos_var2 = st.multiselect('What Positions would you like to view?', options = ['QB', 'RB', 'WR', 'TE']) + elif pos_split2 == 'All Positions': + pos_var2 = 'All' + sal_var2 = st.slider("Is there a certain price range you want to view?", 2000, 15000, (2000, 15000), key='sal_var2') + if custom_var2 == 'Yes': + contest_var2 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var2') + if site_var2 == 'Draftkings': + raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var2)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'overall'] + elif site_var2 == 'Fanduel': + raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var2)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'overall'] + split_var2 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var2') + if split_var2 == 'Specific Games': + team_var2 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var2') + elif split_var2 == 'Full Slate Run': + team_var2 = raw_baselines.Team.values.tolist() + pos_split2 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split2') + if pos_split2 == 'Specific Positions': + pos_var2 = st.multiselect('What Positions would you like to view?', options = ['QB', 'RB', 'WR', 'TE']) + elif pos_split2 == 'All Positions': + pos_var2 = 'All' + sal_var2 = st.slider("Is there a certain price range you want to view?", 2000, 15000, (2000, 15000), key='sal_var2') + + + with col2: + if custom_var2 == 'No': + final_Proj = raw_baselines[raw_baselines['Team'].isin(team_var2)] + final_Proj = final_Proj[final_Proj['Salary'] >= sal_var2[0]] + final_Proj = final_Proj[final_Proj['Salary'] <= sal_var2[1]] + if pos_var2 != 'All': + final_Proj = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var2))] + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX']] + final_Proj = final_Proj.sort_values(by='Median', ascending=False) + + if view_var2 == 'Simple': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Salary', 'Median', 'Top_5_finish', '4x%']] + disp_proj = final_Proj.set_index('Player') + elif view_var2 == 'Advanced': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX']] + disp_proj = final_Proj.set_index('Player') + st.dataframe(disp_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True) + st.download_button( + label="Export Tables", + data=convert_df_to_csv(final_Proj), + file_name='NFL_overall_export.csv', + mime='text/csv', + ) + elif custom_var2 == 'Yes': + hold_container = st.empty() + if st.button('Create Range of Outcomes for Slate'): + with hold_container: + if site_var2 == 'Draftkings': + working_roo = player_stats + working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True) + working_roo.replace('', 0, inplace=True) + if site_var2 == 'Fanduel': + working_roo = player_stats + working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True) + working_roo.replace('', 0, inplace=True) + working_roo = working_roo[working_roo['Team'].isin(team_var2)] + working_roo = working_roo[working_roo['Salary'] >= sal_var2[0]] + working_roo = working_roo[working_roo['Salary'] <= sal_var2[1]] + own_dict = dict(zip(working_roo.Player, working_roo.Own)) + team_dict = dict(zip(working_roo.Player, working_roo.Team)) + opp_dict = dict(zip(working_roo.Player, working_roo.Opp)) + total_sims = 1000 + + flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']] + flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True) + flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25) + flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions']) + flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions'] + flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']] + hold_file = flex_file + overall_file = flex_file + salary_file = flex_file + + overall_players = overall_file[['Player']] + + for x in range(0,total_sims): + salary_file[x] = salary_file['Salary'] + + salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) + salary_file.astype('int').dtypes + + salary_file = salary_file.div(1000) + + for x in range(0,total_sims): + overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD']) + + overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) + overall_file.astype('int').dtypes + + players_only = hold_file[['Player']] + raw_lineups_file = players_only + + for x in range(0,total_sims): + maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))} + raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])]) + players_only[x] = raw_lineups_file[x].rank(ascending=False) + + players_only=players_only.drop(['Player'], axis=1) + players_only.astype('int').dtypes + + salary_2x_check = (overall_file - (salary_file*2)) + salary_3x_check = (overall_file - (salary_file*3)) + salary_4x_check = (overall_file - (salary_file*4)) + + players_only['Average_Rank'] = players_only.mean(axis=1) + players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims + players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims + players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims + players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims) + players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims) + players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims) + players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims) + + players_only['Player'] = hold_file[['Player']] + + final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']] + + final_Proj = pd.merge(hold_file, final_outcomes, on="Player") + final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']] + final_Proj['Own'] = final_Proj['Player'].map(own_dict) + final_Proj['Team'] = final_Proj['Player'].map(team_dict) + final_Proj['Opp'] = final_Proj['Player'].map(opp_dict) + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']] + final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True) + final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True) + final_Proj['LevX'] = 0 + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['CPT_Own'] = final_Proj['Own'] / 4 + + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']] + final_Proj = final_Proj.set_index('Player') + final_Proj = final_Proj.sort_values(by='Median', ascending=False) + + with hold_container: + hold_container = st.empty() + final_Proj = final_Proj + if view_var2 == 'Simple': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Salary', 'Median', 'Top_5_finish', '4x%']] + disp_proj = final_Proj.set_index('Player') + elif view_var2 == 'Advanced': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']] + disp_proj = final_Proj.set_index('Player') + st.dataframe(disp_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True) + + st.download_button( + label="Export Tables", + data=convert_df_to_csv(final_Proj), + file_name='Custom_NFL_overall_export.csv', + mime='text/csv', + ) + +with tab3: + col1, col2 = st.columns([1, 5]) + with col1: + st.info(t_stamp) + if st.button("Load/Reset Data", key='reset3'): + st.cache_data.clear() + player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = player_stat_table() + dk_lineups = init_DK_lineups() + fd_lineups = init_FD_lineups() + t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST" + for key in st.session_state.keys(): + del st.session_state[key] + slate_var3 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var3') + site_var3 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var3') + view_var3 = st.radio("What view would you like to display?", ('Advanced', 'Simple'), key='view_var3') + custom_var3 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var3') + if custom_var3 == 'No': + if site_var3 == 'Draftkings': + raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var3)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_qbs'] + raw_baselines = raw_baselines.iloc[:,:-3] + elif site_var3 == 'Fanduel': + raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var3)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_qbs'] + raw_baselines = raw_baselines.iloc[:,:-3] + split_var3 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var3') + if split_var3 == 'Specific Games': + team_var3 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var3') + elif split_var3 == 'Full Slate Run': + team_var3 = raw_baselines.Team.values.tolist() + pos_split3 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split3') + if pos_split3 == 'Specific Positions': + pos_var3 = st.multiselect('What Positions would you like to view?', options = ['QB'], key='pos_var3') + elif pos_split3 == 'All Positions': + pos_var3 = 'All' + sal_var3 = st.slider("Is there a certain price range you want to view?", 2000, 15000, (2000, 15000), key='sal_var3') + if custom_var3 == 'Yes': + contest_var3 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var3') + if site_var3 == 'Draftkings': + raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var3)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_qbs'] + raw_baselines = raw_baselines.iloc[:,:-3] + elif site_var3 == 'Fanduel': + raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var3)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_qbs'] + raw_baselines = raw_baselines.iloc[:,:-3] + split_var3 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var3') + if split_var3 == 'Specific Games': + team_var3 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var3') + elif split_var3 == 'Full Slate Run': + team_var3 = raw_baselines.Team.values.tolist() + pos_split3 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split3') + if pos_split3 == 'Specific Positions': + pos_var3 = st.multiselect('What Positions would you like to view?', options = ['QB']) + elif pos_split3 == 'All Positions': + pos_var3 = 'All' + sal_var3 = st.slider("Is there a certain price range you want to view?", 2000, 15000, (2000, 15000), key='sal_var3') + + + with col2: + if custom_var3 == 'No': + final_Proj = raw_baselines[raw_baselines['Team'].isin(team_var3)] + final_Proj = final_Proj[final_Proj['Salary'] >= sal_var3[0]] + final_Proj = final_Proj[final_Proj['Salary'] <= sal_var3[1]] + if pos_var3 != 'All': + final_Proj = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var3))] + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX']] + final_Proj = final_Proj.sort_values(by='Median', ascending=False) + + if view_var3 == 'Simple': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Salary', 'Median', 'Top_5_finish', '4x%']] + disp_proj = final_Proj.set_index('Player') + elif view_var3 == 'Advanced': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX']] + disp_proj = final_Proj.set_index('Player') + st.dataframe(disp_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True) + st.download_button( + label="Export Tables", + data=convert_df_to_csv(final_Proj), + file_name='NFL_qb_export.csv', + mime='text/csv', + ) + elif custom_var3 == 'Yes': + hold_container = st.empty() + if st.button('Create Range of Outcomes for Slate'): + with hold_container: + if site_var3 == 'Draftkings': + working_roo = player_stats + working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True) + working_roo.replace('', 0, inplace=True) + working_roo = working_roo[working_roo['Position'] == 'QB'] + if site_var3 == 'Fanduel': + working_roo = player_stats + working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True) + working_roo.replace('', 0, inplace=True) + working_roo = working_roo[working_roo['Position'] == 'QB'] + working_roo = working_roo[working_roo['Team'].isin(team_var3)] + working_roo = working_roo[working_roo['Salary'] >= sal_var2[0]] + working_roo = working_roo[working_roo['Salary'] <= sal_var2[1]] + own_dict = dict(zip(working_roo.Player, working_roo.Own)) + team_dict = dict(zip(working_roo.Player, working_roo.Team)) + opp_dict = dict(zip(working_roo.Player, working_roo.Opp)) + total_sims = 1000 + + flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']] + flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True) + flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25) + flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions']) + flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions'] + flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']] + hold_file = flex_file + overall_file = flex_file + salary_file = flex_file + + overall_players = overall_file[['Player']] + + for x in range(0,total_sims): + salary_file[x] = salary_file['Salary'] + + salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) + salary_file.astype('int').dtypes + + salary_file = salary_file.div(1000) + + for x in range(0,total_sims): + overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD']) + + overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) + overall_file.astype('int').dtypes + + players_only = hold_file[['Player']] + raw_lineups_file = players_only + + for x in range(0,total_sims): + maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))} + raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])]) + players_only[x] = raw_lineups_file[x].rank(ascending=False) + + players_only=players_only.drop(['Player'], axis=1) + players_only.astype('int').dtypes + + salary_2x_check = (overall_file - (salary_file*2)) + salary_3x_check = (overall_file - (salary_file*3)) + salary_4x_check = (overall_file - (salary_file*4)) + + players_only['Average_Rank'] = players_only.mean(axis=1) + players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims + players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims + players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims + players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims) + players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims) + players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims) + players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims) + + players_only['Player'] = hold_file[['Player']] + + final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']] + + final_Proj = pd.merge(hold_file, final_outcomes, on="Player") + final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']] + final_Proj['Own'] = final_Proj['Player'].map(own_dict) + final_Proj['Team'] = final_Proj['Player'].map(team_dict) + final_Proj['Opp'] = final_Proj['Player'].map(opp_dict) + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']] + final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True) + final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True) + final_Proj['LevX'] = 0 + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['CPT_Own'] = final_Proj['Own'] / 4 + + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']] + final_Proj = final_Proj.set_index('Player') + final_Proj = final_Proj.sort_values(by='Median', ascending=False) + + with hold_container: + hold_container = st.empty() + final_Proj = final_Proj + if view_var3 == 'Simple': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Salary', 'Median', 'Top_5_finish', '4x%']] + disp_proj = final_Proj.set_index('Player') + elif view_var3 == 'Advanced': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']] + disp_proj = final_Proj.set_index('Player') + st.dataframe(disp_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True) + + st.download_button( + label="Export Tables", + data=convert_df_to_csv(final_Proj), + file_name='Custom_NFL_qb_export.csv', + mime='text/csv', + ) + +with tab4: + col1, col2 = st.columns([1, 5]) + with col1: + st.info(t_stamp) + if st.button("Load/Reset Data", key='reset4'): + st.cache_data.clear() + player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = player_stat_table() + dk_lineups = init_DK_lineups() + fd_lineups = init_FD_lineups() + t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST" + for key in st.session_state.keys(): + del st.session_state[key] + slate_var4 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var4') + site_var4 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var4') + view_var4 = st.radio("What view would you like to display?", ('Advanced', 'Simple'), key='view_var4') + custom_var4 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var4') + if custom_var4 == 'No': + if site_var4 == 'Draftkings': + raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var4)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_rbs'] + raw_baselines = raw_baselines.iloc[:,:-3] + elif site_var4 == 'Fanduel': + raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var4)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_rbs'] + raw_baselines = raw_baselines.iloc[:,:-3] + split_var4 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var4') + if split_var4 == 'Specific Games': + team_var4 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var4') + elif split_var4 == 'Full Slate Run': + team_var4 = raw_baselines.Team.values.tolist() + pos_split4 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split4') + if pos_split4 == 'Specific Positions': + pos_var4 = st.multiselect('What Positions would you like to view?', options = ['RB'], key='pos_var4') + elif pos_split4 == 'All Positions': + pos_var4 = 'All' + sal_var4 = st.slider("Is there a certain price range you want to view?", 2000, 15000, (2000, 15000), key='sal_var4') + if custom_var4 == 'Yes': + contest_var4 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var4') + if site_var4 == 'Draftkings': + raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var4)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_rbs'] + elif site_var4 == 'Fanduel': + raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var4)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_rbs'] + split_var4 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var4') + if split_var4 == 'Specific Games': + team_var4 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var4') + elif split_var4 == 'Full Slate Run': + team_var4 = raw_baselines.Team.values.tolist() + pos_split4 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split4') + if pos_split4 == 'Specific Positions': + pos_var4 = st.multiselect('What Positions would you like to view?', options = ['RB']) + elif pos_split4 == 'All Positions': + pos_var4 = 'All' + sal_var4 = st.slider("Is there a certain price range you want to view?", 2000, 15000, (2000, 15000), key='sal_var4') + + + with col2: + if custom_var4 == 'No': + final_Proj = raw_baselines[raw_baselines['Team'].isin(team_var4)] + final_Proj = final_Proj[final_Proj['Salary'] >= sal_var4[0]] + final_Proj = final_Proj[final_Proj['Salary'] <= sal_var4[1]] + if pos_var4 != 'All': + final_Proj = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var4))] + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX']] + final_Proj = final_Proj.set_index('Player') + final_Proj = final_Proj.sort_values(by='Median', ascending=False) + + if view_var4 == 'Simple': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Salary', 'Median', 'Top_5_finish', '4x%']] + disp_proj = final_Proj.set_index('Player') + elif view_var4 == 'Advanced': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX']] + disp_proj = final_Proj.set_index('Player') + st.dataframe(disp_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True) + st.download_button( + label="Export Tables", + data=convert_df_to_csv(final_Proj), + file_name='NFL_rb_export.csv', + mime='text/csv', + ) + elif custom_var4 == 'Yes': + hold_container = st.empty() + if st.button('Create Range of Outcomes for Slate'): + with hold_container: + if site_var4 == 'Draftkings': + working_roo = player_stats + working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True) + working_roo.replace('', 0, inplace=True) + working_roo = working_roo[working_roo['Position'] == 'RB'] + if site_var4 == 'Fanduel': + working_roo = player_stats + working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True) + working_roo.replace('', 0, inplace=True) + working_roo = working_roo[working_roo['Position'] == 'RB'] + working_roo = working_roo[working_roo['Team'].isin(team_var4)] + working_roo = working_roo[working_roo['Salary'] >= sal_var4[0]] + working_roo = working_roo[working_roo['Salary'] <= sal_var4[1]] + own_dict = dict(zip(working_roo.Player, working_roo.Own)) + team_dict = dict(zip(working_roo.Player, working_roo.Team)) + opp_dict = dict(zip(working_roo.Player, working_roo.Opp)) + total_sims = 1000 + + flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']] + flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True) + flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25) + flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions']) + flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions'] + flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']] + hold_file = flex_file + overall_file = flex_file + salary_file = flex_file + + overall_players = overall_file[['Player']] + + for x in range(0,total_sims): + salary_file[x] = salary_file['Salary'] + + salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) + salary_file.astype('int').dtypes + + salary_file = salary_file.div(1000) + + for x in range(0,total_sims): + overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD']) + + overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) + overall_file.astype('int').dtypes + + players_only = hold_file[['Player']] + raw_lineups_file = players_only + + for x in range(0,total_sims): + maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))} + raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])]) + players_only[x] = raw_lineups_file[x].rank(ascending=False) + + players_only=players_only.drop(['Player'], axis=1) + players_only.astype('int').dtypes + + salary_2x_check = (overall_file - (salary_file*2)) + salary_3x_check = (overall_file - (salary_file*3)) + salary_4x_check = (overall_file - (salary_file*4)) + + players_only['Average_Rank'] = players_only.mean(axis=1) + players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims + players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims + players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims + players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims) + players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims) + players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims) + players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims) + + players_only['Player'] = hold_file[['Player']] + + final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']] + + final_Proj = pd.merge(hold_file, final_outcomes, on="Player") + final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']] + final_Proj['Own'] = final_Proj['Player'].map(own_dict) + final_Proj['Team'] = final_Proj['Player'].map(team_dict) + final_Proj['Opp'] = final_Proj['Player'].map(opp_dict) + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']] + final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True) + final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True) + final_Proj['LevX'] = 0 + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['CPT_Own'] = final_Proj['Own'] / 4 + + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']] + final_Proj = final_Proj.set_index('Player') + final_Proj = final_Proj.sort_values(by='Median', ascending=False) + + with hold_container: + hold_container = st.empty() + final_Proj = final_Proj + if view_var4 == 'Simple': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Salary', 'Median', 'Top_5_finish', '4x%']] + disp_proj = final_Proj.set_index('Player') + elif view_var4 == 'Advanced': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']] + disp_proj = final_Proj.set_index('Player') + st.dataframe(disp_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True) + + st.download_button( + label="Export Tables", + data=convert_df_to_csv(final_Proj), + file_name='Custom_NFL_rb_export.csv', + mime='text/csv', + ) + +with tab5: + col1, col2 = st.columns([1, 5]) + with col1: + st.info(t_stamp) + if st.button("Load/Reset Data", key='reset5'): + st.cache_data.clear() + player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = player_stat_table() + dk_lineups = init_DK_lineups() + fd_lineups = init_FD_lineups() + t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST" + for key in st.session_state.keys(): + del st.session_state[key] + slate_var5 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var5') + site_var5 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var5') + view_var5 = st.radio("What view would you like to display?", ('Advanced', 'Simple'), key='view_var5') + custom_var5 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var5') + if custom_var5 == 'No': + if site_var5 == 'Draftkings': + raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var5)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_wrs'] + raw_baselines = raw_baselines.iloc[:,:-3] + elif site_var5 == 'Fanduel': + raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var5)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_wrs'] + raw_baselines = raw_baselines.iloc[:,:-3] + split_var5 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var5') + if split_var5 == 'Specific Games': + team_var5 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var5') + elif split_var5 == 'Full Slate Run': + team_var5 = raw_baselines.Team.values.tolist() + pos_split5 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split5') + if pos_split5 == 'Specific Positions': + pos_var5 = st.multiselect('What Positions would you like to view?', options = ['WR'], key='pos_var5') + elif pos_split5 == 'All Positions': + pos_var5 = 'All' + sal_var5 = st.slider("Is there a certain price range you want to view?", 2000, 15000, (2000, 15000), key='sal_var5') + if custom_var5 == 'Yes': + contest_var5 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var5') + if site_var5 == 'Draftkings': + raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var5)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_wrs'] + elif site_var5 == 'Fanduel': + raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var5)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_wrs'] + split_var5 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var5') + if split_var5 == 'Specific Games': + team_var5 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var5') + elif split_var5 == 'Full Slate Run': + team_var5 = raw_baselines.Team.values.tolist() + pos_split5 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split5') + if pos_split5 == 'Specific Positions': + pos_var5 = st.multiselect('What Positions would you like to view?', options = ['WR']) + elif pos_split5 == 'All Positions': + pos_var5 = 'All' + sal_var5 = st.slider("Is there a certain price range you want to view?", 2000, 15000, (2000, 15000), key='sal_var5') + + + with col2: + if custom_var5 == 'No': + final_Proj = raw_baselines[raw_baselines['Team'].isin(team_var5)] + final_Proj = final_Proj[final_Proj['Salary'] >= sal_var5[0]] + final_Proj = final_Proj[final_Proj['Salary'] <= sal_var5[1]] + if pos_var5 != 'All': + final_Proj = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var5))] + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX']] + final_Proj = final_Proj.set_index('Player') + final_Proj = final_Proj.sort_values(by='Median', ascending=False) + + if view_var5 == 'Simple': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Salary', 'Median', 'Top_5_finish', '4x%']] + disp_proj = final_Proj.set_index('Player') + elif view_var5 == 'Advanced': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX']] + disp_proj = final_Proj.set_index('Player') + st.dataframe(disp_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True) + st.download_button( + label="Export Tables", + data=convert_df_to_csv(final_Proj), + file_name='NFL_wr_export.csv', + mime='text/csv', + ) + elif custom_var5 == 'Yes': + hold_container = st.empty() + if st.button('Create Range of Outcomes for Slate'): + with hold_container: + if site_var5 == 'Draftkings': + working_roo = player_stats + working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True) + working_roo.replace('', 0, inplace=True) + working_roo = working_roo[working_roo['Position'] == 'WR'] + if site_var5 == 'Fanduel': + working_roo = player_stats + working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True) + working_roo.replace('', 0, inplace=True) + working_roo = working_roo[working_roo['Position'] == 'WR'] + working_roo = working_roo[working_roo['Team'].isin(team_var5)] + working_roo = working_roo[working_roo['Salary'] >= sal_var5[0]] + working_roo = working_roo[working_roo['Salary'] <= sal_var5[1]] + own_dict = dict(zip(working_roo.Player, working_roo.Own)) + team_dict = dict(zip(working_roo.Player, working_roo.Team)) + opp_dict = dict(zip(working_roo.Player, working_roo.Opp)) + total_sims = 1000 + + flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']] + flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True) + flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25) + flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions']) + flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions'] + flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']] + hold_file = flex_file + overall_file = flex_file + salary_file = flex_file + + overall_players = overall_file[['Player']] + + for x in range(0,total_sims): + salary_file[x] = salary_file['Salary'] + + salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) + salary_file.astype('int').dtypes + + salary_file = salary_file.div(1000) + + for x in range(0,total_sims): + overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD']) + + overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) + overall_file.astype('int').dtypes + + players_only = hold_file[['Player']] + raw_lineups_file = players_only + + for x in range(0,total_sims): + maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))} + raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])]) + players_only[x] = raw_lineups_file[x].rank(ascending=False) + + players_only=players_only.drop(['Player'], axis=1) + players_only.astype('int').dtypes + + salary_2x_check = (overall_file - (salary_file*2)) + salary_3x_check = (overall_file - (salary_file*3)) + salary_4x_check = (overall_file - (salary_file*4)) + + players_only['Average_Rank'] = players_only.mean(axis=1) + players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims + players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims + players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims + players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims) + players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims) + players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims) + players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims) + + players_only['Player'] = hold_file[['Player']] + + final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']] + + final_Proj = pd.merge(hold_file, final_outcomes, on="Player") + final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']] + final_Proj['Own'] = final_Proj['Player'].map(own_dict) + final_Proj['Team'] = final_Proj['Player'].map(team_dict) + final_Proj['Opp'] = final_Proj['Player'].map(opp_dict) + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']] + final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True) + final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True) + final_Proj['LevX'] = 0 + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['CPT_Own'] = final_Proj['Own'] / 4 + + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']] + final_Proj = final_Proj.set_index('Player') + final_Proj = final_Proj.sort_values(by='Median', ascending=False) + + with hold_container: + hold_container = st.empty() + final_Proj = final_Proj + if view_var5 == 'Simple': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Salary', 'Median', 'Top_5_finish', '4x%']] + disp_proj = final_Proj.set_index('Player') + elif view_var5 == 'Advanced': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']] + disp_proj = final_Proj.set_index('Player') + st.dataframe(disp_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True) + + st.download_button( + label="Export Tables", + data=convert_df_to_csv(final_Proj), + file_name='Custom_NFL_wr_export.csv', + mime='text/csv', + ) + +with tab6: + col1, col2 = st.columns([1, 5]) + with col1: + st.info(t_stamp) + if st.button("Load/Reset Data", key='reset6'): + st.cache_data.clear() + player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = player_stat_table() + dk_lineups = init_DK_lineups() + fd_lineups = init_FD_lineups() + t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST" + for key in st.session_state.keys(): + del st.session_state[key] + slate_var6 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var6') + site_var6 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var6') + view_var6 = st.radio("What view would you like to display?", ('Advanced', 'Simple'), key='view_var6') + custom_var6 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var6') + if custom_var6 == 'No': + if site_var6 == 'Draftkings': + raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var6)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_tes'] + raw_baselines = raw_baselines.iloc[:,:-3] + elif site_var6 == 'Fanduel': + raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var6)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_tes'] + raw_baselines = raw_baselines.iloc[:,:-3] + split_var6 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var6') + if split_var6 == 'Specific Games': + team_var6 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var6') + elif split_var6 == 'Full Slate Run': + team_var6 = raw_baselines.Team.values.tolist() + pos_split6 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split6') + if pos_split6 == 'Specific Positions': + pos_var6 = st.multiselect('What Positions would you like to view?', options = ['TE'], key='pos_var6') + elif pos_split5 == 'All Positions': + pos_var6 = 'All' + sal_var6 = st.slider("Is there a certain price range you want to view?", 2000, 15000, (2000, 15000), key='sal_var6') + if custom_var6 == 'Yes': + contest_var6 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var6') + if site_var6 == 'Draftkings': + raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var6)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_tes'] + elif site_var6 == 'Fanduel': + raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var6)] + raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_tes'] + split_var6 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var6') + if split_var6 == 'Specific Games': + team_var6 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var6') + elif split_var6 == 'Full Slate Run': + team_var6 = raw_baselines.Team.values.tolist() + pos_split6 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split6') + if pos_split6 == 'Specific Positions': + pos_var6 = st.multiselect('What Positions would you like to view?', options = ['TE']) + elif pos_split6 == 'All Positions': + pos_var6 = 'All' + sal_var6 = st.slider("Is there a certain price range you want to view?", 2000, 15000, (2000, 15000), key='sal_var6') + + + with col2: + if custom_var6 == 'No': + final_Proj = raw_baselines[raw_baselines['Team'].isin(team_var6)] + final_Proj = final_Proj[final_Proj['Salary'] >= sal_var6[0]] + final_Proj = final_Proj[final_Proj['Salary'] <= sal_var6[1]] + if pos_var6 != 'All': + final_Proj = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var6))] + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX']] + final_Proj = final_Proj.set_index('Player') + final_Proj = final_Proj.sort_values(by='Median', ascending=False) + + if view_var6 == 'Simple': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Salary', 'Median', 'Top_5_finish', '4x%']] + disp_proj = final_Proj.set_index('Player') + elif view_var6 == 'Advanced': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX']] + disp_proj = final_Proj.set_index('Player') + st.dataframe(disp_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True) + st.download_button( + label="Export Tables", + data=convert_df_to_csv(final_Proj), + file_name='NFL_te_export.csv', + mime='text/csv', + ) + elif custom_var6 == 'Yes': + hold_container = st.empty() + if st.button('Create Range of Outcomes for Slate'): + with hold_container: + if site_var6 == 'Draftkings': + working_roo = player_stats + working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True) + working_roo.replace('', 0, inplace=True) + working_roo = working_roo[working_roo['Position'] == 'TE'] + if site_var6 == 'Fanduel': + working_roo = player_stats + working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True) + working_roo.replace('', 0, inplace=True) + working_roo = working_roo[working_roo['Position'] == 'TE'] + working_roo = working_roo[working_roo['Team'].isin(team_var6)] + working_roo = working_roo[working_roo['Salary'] >= sal_var6[0]] + working_roo = working_roo[working_roo['Salary'] <= sal_var6[1]] + own_dict = dict(zip(working_roo.Player, working_roo.Own)) + team_dict = dict(zip(working_roo.Player, working_roo.Team)) + opp_dict = dict(zip(working_roo.Player, working_roo.Opp)) + total_sims = 1000 + + flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']] + flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True) + flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25) + flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions']) + flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions'] + flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']] + hold_file = flex_file + overall_file = flex_file + salary_file = flex_file + + overall_players = overall_file[['Player']] + + for x in range(0,total_sims): + salary_file[x] = salary_file['Salary'] + + salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) + salary_file.astype('int').dtypes + + salary_file = salary_file.div(1000) + + for x in range(0,total_sims): + overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD']) + + overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) + overall_file.astype('int').dtypes + + players_only = hold_file[['Player']] + raw_lineups_file = players_only + + for x in range(0,total_sims): + maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))} + raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])]) + players_only[x] = raw_lineups_file[x].rank(ascending=False) + + players_only=players_only.drop(['Player'], axis=1) + players_only.astype('int').dtypes + + salary_2x_check = (overall_file - (salary_file*2)) + salary_3x_check = (overall_file - (salary_file*3)) + salary_4x_check = (overall_file - (salary_file*4)) + + players_only['Average_Rank'] = players_only.mean(axis=1) + players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims + players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims + players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims + players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims) + players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims) + players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims) + players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims) + + players_only['Player'] = hold_file[['Player']] + + final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']] + + final_Proj = pd.merge(hold_file, final_outcomes, on="Player") + final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']] + final_Proj['Own'] = final_Proj['Player'].map(own_dict) + final_Proj['Team'] = final_Proj['Player'].map(team_dict) + final_Proj['Opp'] = final_Proj['Player'].map(opp_dict) + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']] + final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True) + final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True) + final_Proj['LevX'] = 0 + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX']) + final_Proj['CPT_Own'] = final_Proj['Own'] / 4 + + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']] + final_Proj = final_Proj.set_index('Player') + final_Proj = final_Proj.sort_values(by='Median', ascending=False) + + with hold_container: + hold_container = st.empty() + final_Proj = final_Proj + if view_var6 == 'Simple': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Salary', 'Median', 'Top_5_finish', '4x%']] + disp_proj = final_Proj.set_index('Player') + elif view_var6 == 'Advanced': + final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']] + disp_proj = final_Proj.set_index('Player') + st.dataframe(disp_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True) + + st.download_button( + label="Export Tables", + data=convert_df_to_csv(final_Proj), + file_name='Custom_NFL_te_export.csv', + mime='text/csv', + ) +with tab7: + col1, col2 = st.columns([1, 7]) + with col1: + if st.button("Load/Reset Data", key='reset7'): + st.cache_data.clear() + player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = player_stat_table() + dk_lineups = init_DK_lineups() + fd_lineups = init_FD_lineups() + t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST" + for key in st.session_state.keys(): + del st.session_state[key] + + slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Just the Main Slate')) + site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel')) + lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1) + + if site_var1 == 'Draftkings': + ROO_slice = dk_roo_raw[dk_roo_raw['site'] == 'Draftkings'] + id_dict = dict(zip(ROO_slice.Player, ROO_slice.player_id)) + column_names = dk_columns + + player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1') + if player_var1 == 'Specific Players': + player_var2 = st.multiselect('Which players do you want?', options = dk_roo_raw['Player'].unique()) + elif player_var1 == 'Full Slate': + player_var2 = dk_roo_raw.Player.values.tolist() + + elif site_var1 == 'Fanduel': + ROO_slice = fd_roo_raw[fd_roo_raw['site'] == 'Fanduel'] + id_dict = dict(zip(ROO_slice.Player, ROO_slice.player_id)) + column_names = fd_columns + + player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1') + if player_var1 == 'Specific Players': + player_var2 = st.multiselect('Which players do you want?', options = fd_roo_raw['Player'].unique()) + elif player_var1 == 'Full Slate': + player_var2 = fd_roo_raw.Player.values.tolist() + + if st.button("Prepare data export", key='data_export'): + data_export = st.session_state.working_seed.copy() + if site_var1 == 'Draftkings': + for col_idx in range(9): + data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]]) + elif site_var1 == 'Fanduel': + for col_idx in range(9): + data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]]) + st.download_button( + label="Export optimals set", + data=convert_df(data_export), + file_name='NFL_optimals_export.csv', + mime='text/csv', + ) + with col2: + + if site_var1 == 'Draftkings': + if 'working_seed' in st.session_state: + st.session_state.working_seed = st.session_state.working_seed + if player_var1 == 'Specific Players': + st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] + elif player_var1 == 'Full Slate': + st.session_state.working_seed = dk_lineups.copy() + st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) + elif 'working_seed' not in st.session_state: + st.session_state.working_seed = dk_lineups.copy() + st.session_state.working_seed = st.session_state.working_seed + if player_var1 == 'Specific Players': + st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] + elif player_var1 == 'Full Slate': + st.session_state.working_seed = dk_lineups.copy() + st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) + + elif site_var1 == 'Fanduel': + if 'working_seed' in st.session_state: + st.session_state.working_seed = st.session_state.working_seed + if player_var1 == 'Specific Players': + st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] + elif player_var1 == 'Full Slate': + st.session_state.working_seed = fd_lineups.copy() + st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) + elif 'working_seed' not in st.session_state: + st.session_state.working_seed = fd_lineups.copy() + st.session_state.working_seed = st.session_state.working_seed + if player_var1 == 'Specific Players': + st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] + elif player_var1 == 'Full Slate': + st.session_state.working_seed = fd_lineups.copy() + st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) + + export_file = st.session_state.data_export_display.copy() + if site_var1 == 'Draftkings': + for col_idx in range(9): + export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict) + elif site_var1 == 'Fanduel': + for col_idx in range(9): + export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict) + + with st.container(): + if st.button("Reset Optimals", key='reset9'): + for key in st.session_state.keys(): + del st.session_state[key] + if site_var1 == 'Draftkings': + st.session_state.working_seed = dk_lineups.copy() + elif site_var1 == 'Fanduel': + st.session_state.working_seed = fd_lineups.copy() + if 'data_export_display' in st.session_state: + st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True) + st.download_button( + label="Export display optimals", + data=convert_df(export_file), + file_name='NFL_display_optimals.csv', + mime='text/csv', + ) + + with st.container(): + if 'working_seed' in st.session_state: + # Create a new dataframe with summary statistics + if site_var1 == 'Draftkings': + summary_df = pd.DataFrame({ + 'Metric': ['Min', 'Average', 'Max', 'STDdev'], + 'Salary': [ + np.min(st.session_state.working_seed[:,9]), + np.mean(st.session_state.working_seed[:,9]), + np.max(st.session_state.working_seed[:,9]), + np.std(st.session_state.working_seed[:,9]) + ], + 'Proj': [ + np.min(st.session_state.working_seed[:,10]), + np.mean(st.session_state.working_seed[:,10]), + np.max(st.session_state.working_seed[:,10]), + np.std(st.session_state.working_seed[:,10]) + ], + 'Own': [ + np.min(st.session_state.working_seed[:,15]), + np.mean(st.session_state.working_seed[:,15]), + np.max(st.session_state.working_seed[:,15]), + np.std(st.session_state.working_seed[:,15]) + ] + }) + elif site_var1 == 'Fanduel': + summary_df = pd.DataFrame({ + 'Metric': ['Min', 'Average', 'Max', 'STDdev'], + 'Salary': [ + np.min(st.session_state.working_seed[:,9]), + np.mean(st.session_state.working_seed[:,9]), + np.max(st.session_state.working_seed[:,9]), + np.std(st.session_state.working_seed[:,9]) + ], + 'Proj': [ + np.min(st.session_state.working_seed[:,10]), + np.mean(st.session_state.working_seed[:,10]), + np.max(st.session_state.working_seed[:,10]), + np.std(st.session_state.working_seed[:,10]) + ], + 'Own': [ + np.min(st.session_state.working_seed[:,15]), + np.mean(st.session_state.working_seed[:,15]), + np.max(st.session_state.working_seed[:,15]), + np.std(st.session_state.working_seed[:,15]) + ] + }) + + # Set the index of the summary dataframe as the "Metric" column + summary_df = summary_df.set_index('Metric') + + # Display the summary dataframe + st.subheader("Optimal Statistics") + st.dataframe(summary_df.style.format({ + 'Salary': '{:.2f}', + 'Proj': '{:.2f}', + 'Own': '{:.2f}' + }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True) + + with st.container(): + tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"]) + with tab1: + if 'data_export_display' in st.session_state: + if site_var1 == 'Draftkings': + player_columns = st.session_state.data_export_display.iloc[:, :9] + elif site_var1 == 'Fanduel': + player_columns = st.session_state.data_export_display.iloc[:, :9] + + # Flatten the DataFrame and count unique values + value_counts = player_columns.values.flatten().tolist() + value_counts = pd.Series(value_counts).value_counts() + + percentages = (value_counts / lineup_num_var * 100).round(2) + + # Create a DataFrame with the results + summary_df = pd.DataFrame({ + 'Player': value_counts.index, + 'Frequency': value_counts.values, + 'Percentage': percentages.values + }) + + # Sort by frequency in descending order + summary_df = summary_df.sort_values('Frequency', ascending=False) + + # Display the table + st.write("Player Frequency Table:") + st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True) + + st.download_button( + label="Export player frequency", + data=convert_df_to_csv(summary_df), + file_name='NFL_player_frequency.csv', + mime='text/csv', + ) + with tab2: + if 'working_seed' in st.session_state: + if site_var1 == 'Draftkings': + player_columns = st.session_state.working_seed[:, :9] + elif site_var1 == 'Fanduel': + player_columns = st.session_state.working_seed[:, :9] + + # Flatten the DataFrame and count unique values + value_counts = player_columns.flatten().tolist() + value_counts = pd.Series(value_counts).value_counts() + + percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2) + # Create a DataFrame with the results + summary_df = pd.DataFrame({ + 'Player': value_counts.index, + 'Frequency': value_counts.values, + 'Percentage': percentages.values + }) + + # Sort by frequency in descending order + summary_df = summary_df.sort_values('Frequency', ascending=False) + + # Display the table + st.write("Seed Frame Frequency Table:") + st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True) + + st.download_button( + label="Export seed frame frequency", + data=convert_df_to_csv(summary_df), + file_name='NFL_seed_frame_frequency.csv', + mime='text/csv', + ) \ No newline at end of file