Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
af96e17
1
Parent(s):
2a9bc74
initial commit after visual update
Browse files- .streamlit/secrets.toml +1 -0
- Dockerfile +13 -1
- requirements.txt +8 -3
- src/streamlit_app.py +452 -37
.streamlit/secrets.toml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
mongo_uri = "mongodb+srv://multichem:[email protected]/?retryWrites=true&w=majority&appName=TestCluster"
|
Dockerfile
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
FROM python:3.
|
2 |
|
3 |
WORKDIR /app
|
4 |
|
@@ -11,6 +11,18 @@ RUN apt-get update && apt-get install -y \
|
|
11 |
|
12 |
COPY requirements.txt ./
|
13 |
COPY src/ ./src/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
RUN pip3 install -r requirements.txt
|
16 |
|
|
|
1 |
+
FROM python:3.12-slim
|
2 |
|
3 |
WORKDIR /app
|
4 |
|
|
|
11 |
|
12 |
COPY requirements.txt ./
|
13 |
COPY src/ ./src/
|
14 |
+
COPY .streamlit/ ./.streamlit/
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
ENV MONGO_URI="mongodb+srv://multichem:[email protected]/?retryWrites=true&w=majority&appName=TestCluster"
|
19 |
+
RUN useradd -m -u 1000 user
|
20 |
+
USER user
|
21 |
+
ENV HOME=/home/user\
|
22 |
+
PATH=/home/user/.local/bin:$PATH
|
23 |
+
WORKDIR $HOME/app
|
24 |
+
RUN pip install --no-cache-dir --upgrade pip
|
25 |
+
COPY --chown=user . $HOME/app
|
26 |
|
27 |
RUN pip3 install -r requirements.txt
|
28 |
|
requirements.txt
CHANGED
@@ -1,3 +1,8 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
openpyxl
|
3 |
+
matplotlib
|
4 |
+
pulp
|
5 |
+
docker
|
6 |
+
plotly
|
7 |
+
scipy
|
8 |
+
pymongo
|
src/streamlit_app.py
CHANGED
@@ -1,40 +1,455 @@
|
|
1 |
-
import
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
1 |
+
import streamlit as st
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
+
import pymongo
|
5 |
+
import re
|
6 |
+
import os
|
7 |
+
from itertools import combinations
|
8 |
+
|
9 |
+
st.set_page_config(layout="wide")
|
10 |
+
|
11 |
+
@st.cache_resource
|
12 |
+
def init_conn():
|
13 |
+
# Try to get from environment variable first, fall back to secrets
|
14 |
+
uri = os.getenv('MONGO_URI')
|
15 |
+
if not uri:
|
16 |
+
uri = st.secrets['mongo_uri']
|
17 |
+
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
18 |
+
db = client["NFL_Database"]
|
19 |
+
|
20 |
+
return db
|
21 |
+
|
22 |
+
db = init_conn()
|
23 |
+
|
24 |
+
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
|
25 |
+
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
|
26 |
+
|
27 |
+
team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
|
28 |
+
'5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}
|
29 |
+
|
30 |
+
wrong_acro = ['WSH', 'AZ', 'CHW']
|
31 |
+
right_acro = ['WAS', 'ARI', 'CWS']
|
32 |
+
|
33 |
+
st.markdown("""
|
34 |
+
<style>
|
35 |
+
/* Tab styling */
|
36 |
+
.stElementContainer [data-baseweb="button-group"] {
|
37 |
+
gap: 8px;
|
38 |
+
padding: 4px;
|
39 |
+
}
|
40 |
+
.stElementContainer [kind="segmented_control"] {
|
41 |
+
height: 45px;
|
42 |
+
white-space: pre-wrap;
|
43 |
+
background-color: #DAA520;
|
44 |
+
color: white;
|
45 |
+
border-radius: 10px;
|
46 |
+
gap: 1px;
|
47 |
+
padding: 10px 20px;
|
48 |
+
font-weight: bold;
|
49 |
+
transition: all 0.3s ease;
|
50 |
+
}
|
51 |
+
.stElementContainer [kind="segmented_controlActive"] {
|
52 |
+
height: 50px;
|
53 |
+
background-color: #DAA520;
|
54 |
+
border: 3px solid #FFD700;
|
55 |
+
color: white;
|
56 |
+
}
|
57 |
+
.stElementContainer [kind="segmented_control"]:hover {
|
58 |
+
background-color: #FFD700;
|
59 |
+
cursor: pointer;
|
60 |
+
}
|
61 |
+
|
62 |
+
div[data-baseweb="select"] > div {
|
63 |
+
background-color: #DAA520;
|
64 |
+
color: white;
|
65 |
+
}
|
66 |
+
|
67 |
+
</style>""", unsafe_allow_html=True)
|
68 |
+
|
69 |
+
@st.cache_resource(ttl=60)
|
70 |
+
def init_baselines():
|
71 |
+
|
72 |
+
collection = db["Player_Baselines"]
|
73 |
+
cursor = collection.find()
|
74 |
+
|
75 |
+
raw_display = pd.DataFrame(list(cursor))
|
76 |
+
raw_display = raw_display[['name', 'Team', 'Opp', 'Position', 'Salary', 'team_plays', 'team_pass', 'team_rush', 'team_tds', 'team_pass_tds', 'team_rush_tds', 'dropbacks', 'pass_yards', 'pass_tds',
|
77 |
+
'rush_att', 'rush_yards', 'rush_tds', 'targets', 'rec', 'rec_yards', 'rec_tds', 'PPR', 'Half_PPR', 'Own']]
|
78 |
+
player_stats = raw_display[raw_display['Position'] != 'K']
|
79 |
+
|
80 |
+
collection = db["DK_NFL_ROO"]
|
81 |
+
cursor = collection.find()
|
82 |
+
|
83 |
+
raw_display = pd.DataFrame(list(cursor))
|
84 |
+
raw_display = raw_display.rename(columns={'player_ID': 'player_id'})
|
85 |
+
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
|
86 |
+
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
|
87 |
+
load_display = raw_display[raw_display['Position'] != 'K']
|
88 |
+
dk_roo_raw = load_display.dropna(subset=['Median'])
|
89 |
+
|
90 |
+
collection = db["FD_NFL_ROO"]
|
91 |
+
cursor = collection.find()
|
92 |
+
|
93 |
+
raw_display = pd.DataFrame(list(cursor))
|
94 |
+
raw_display = raw_display.rename(columns={'player_ID': 'player_id'})
|
95 |
+
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
|
96 |
+
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
|
97 |
+
load_display = raw_display[raw_display['Position'] != 'K']
|
98 |
+
fd_roo_raw = load_display.dropna(subset=['Median'])
|
99 |
+
|
100 |
+
collection = db["DK_DFS_Stacks"]
|
101 |
+
cursor = collection.find()
|
102 |
+
|
103 |
+
raw_display = pd.DataFrame(list(cursor))
|
104 |
+
raw_display = raw_display[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX', 'slate', 'version']]
|
105 |
+
dk_stacks_raw = raw_display.copy()
|
106 |
+
|
107 |
+
collection = db["FD_DFS_Stacks"]
|
108 |
+
cursor = collection.find()
|
109 |
+
|
110 |
+
raw_display = pd.DataFrame(list(cursor))
|
111 |
+
raw_display = raw_display[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX', 'slate', 'version']]
|
112 |
+
fd_stacks_raw = raw_display.copy()
|
113 |
+
|
114 |
+
return player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw
|
115 |
+
|
116 |
+
@st.cache_data
|
117 |
+
def convert_df_to_csv(df):
|
118 |
+
return df.to_csv().encode('utf-8')
|
119 |
+
|
120 |
+
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = init_baselines()
|
121 |
+
|
122 |
+
app_load_reset_column, app_view_site_column = st.columns([1, 9])
|
123 |
+
with app_load_reset_column:
|
124 |
+
if st.button("Load/Reset Data", key='reset_data_button'):
|
125 |
+
st.cache_data.clear()
|
126 |
+
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = init_baselines()
|
127 |
+
for key in st.session_state.keys():
|
128 |
+
del st.session_state[key]
|
129 |
+
with app_view_site_column:
|
130 |
+
with st.container():
|
131 |
+
app_view_column, app_site_column = st.columns([3, 3])
|
132 |
+
with app_view_column:
|
133 |
+
view_var = st.selectbox("Select view", ["Simple", "Advanced"], key='view_selectbox')
|
134 |
+
with app_site_column:
|
135 |
+
site_var = st.selectbox("What site do you want to view?", ('Draftkings', 'Fanduel'), key='site_selectbox')
|
136 |
+
|
137 |
+
selected_tab = st.segmented_control(
|
138 |
+
"Select Tab",
|
139 |
+
options=["Stack Finder", "User Upload"],
|
140 |
+
selection_mode='single',
|
141 |
+
default='Stack Finder',
|
142 |
+
width='stretch',
|
143 |
+
label_visibility='collapsed',
|
144 |
+
key='tab_selector'
|
145 |
+
)
|
146 |
+
|
147 |
+
if selected_tab == 'Stack Finder':
|
148 |
+
with st.expander("Stack Finder"):
|
149 |
+
app_info_column, slate_choice_column, filtering_column, stack_info_column = st.columns(4)
|
150 |
+
with app_info_column:
|
151 |
+
if st.button("Load/Reset Data", key='reset1'):
|
152 |
+
st.cache_data.clear()
|
153 |
+
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = init_baselines()
|
154 |
+
for key in st.session_state.keys():
|
155 |
+
del st.session_state[key]
|
156 |
+
st.info(f"Last Update: " + str(st.session_state['handbuilder_data']['timestamp'][0]) + f" CST")
|
157 |
+
with slate_choice_column:
|
158 |
+
slate_var1 = st.radio("What slate are you working with?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate', 'User Upload'), key='slate_var1')
|
159 |
+
if slate_var1 == 'User Upload':
|
160 |
+
slate_var1 = st.session_state['proj_dataframe']
|
161 |
+
else:
|
162 |
+
if site_var == 'Draftkings':
|
163 |
+
raw_baselines = dk_roo_raw
|
164 |
+
if slate_var1 == 'Main Slate':
|
165 |
+
raw_baselines = raw_baselines[raw_baselines['Slate'] == 'main_slate']
|
166 |
+
elif slate_var1 == 'Secondary Slate':
|
167 |
+
raw_baselines = raw_baselines[raw_baselines['Slate'] == 'secondary_slate']
|
168 |
+
elif slate_var1 == 'Thurs-Mon Slate':
|
169 |
+
raw_baselines = raw_baselines[raw_baselines['Slate'] == 'thurs_mon_slate']
|
170 |
+
raw_baselines = raw_baselines.sort_values(by='Own', ascending=False)
|
171 |
+
qb_lookup = raw_baselines[raw_baselines['Position'] == 'QB']
|
172 |
+
elif site_var == 'Fanduel':
|
173 |
+
raw_baselines = fd_roo_raw
|
174 |
+
if slate_var1 == 'Main Slate':
|
175 |
+
raw_baselines = raw_baselines[raw_baselines['Slate'] == 'main_slate']
|
176 |
+
elif slate_var1 == 'Secondary Slate':
|
177 |
+
raw_baselines = raw_baselines[raw_baselines['Slate'] == 'secondary_slate']
|
178 |
+
elif slate_var1 == 'Thurs-Mon Slate':
|
179 |
+
raw_baselines = raw_baselines[raw_baselines['Slate'] == 'thurs_mon_slate']
|
180 |
+
raw_baselines = raw_baselines.sort_values(by='Own', ascending=False)
|
181 |
+
qb_lookup = raw_baselines[raw_baselines['Position'] == 'QB']
|
182 |
+
with filtering_column:
|
183 |
+
split_var2 = st.radio("Would you like to run stack analysis for the full slate or individual teams?", ('Full Slate Run', 'Specific Teams'), key='split_var2')
|
184 |
+
if split_var2 == 'Specific Teams':
|
185 |
+
team_var2 = st.multiselect('Which teams would you like to include in the analysis?', options = raw_baselines['Team'].unique(), key='team_var2')
|
186 |
+
elif split_var2 == 'Full Slate Run':
|
187 |
+
team_var2 = raw_baselines.Team.unique().tolist()
|
188 |
+
pos_split2 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split2')
|
189 |
+
if pos_split2 == 'Specific Positions':
|
190 |
+
pos_var2 = st.multiselect('What Positions would you like to view?', options = ['WR', 'TE', 'RB'])
|
191 |
+
elif pos_split2 == 'All Positions':
|
192 |
+
pos_var2 = 'All'
|
193 |
+
with stack_info_column:
|
194 |
+
if site_var == 'Draftkings':
|
195 |
+
max_sal2 = st.number_input('Max Salary', min_value = 5000, max_value = 50000, value = 35000, step = 100, key='max_sal2')
|
196 |
+
elif site_var == 'Fanduel':
|
197 |
+
max_sal2 = st.number_input('Max Salary', min_value = 5000, max_value = 35000, value = 25000, step = 100, key='max_sal2')
|
198 |
+
size_var2 = st.selectbox('What size of stacks are you analyzing?', options = ['3-man', '4-man', '5-man'])
|
199 |
+
if size_var2 == '3-man':
|
200 |
+
stack_size = 3
|
201 |
+
if size_var2 == '4-man':
|
202 |
+
stack_size = 4
|
203 |
+
if size_var2 == '5-man':
|
204 |
+
stack_size = 5
|
205 |
+
|
206 |
+
team_dict = dict(zip(raw_baselines.Player, raw_baselines.Team))
|
207 |
+
proj_dict = dict(zip(raw_baselines.Player, raw_baselines.Median))
|
208 |
+
own_dict = dict(zip(raw_baselines.Player, raw_baselines.Own))
|
209 |
+
cost_dict = dict(zip(raw_baselines.Player, raw_baselines.Salary))
|
210 |
+
qb_dict = dict(zip(qb_lookup.Team, qb_lookup.Player))
|
211 |
+
|
212 |
+
if site_var == 'Draftkings':
|
213 |
+
position_limits = {
|
214 |
+
'QB': 1,
|
215 |
+
'RB': 2,
|
216 |
+
'WR': 3,
|
217 |
+
'TE': 1,
|
218 |
+
'UTIL': 1,
|
219 |
+
'DST': 1,
|
220 |
+
# Add more as needed
|
221 |
+
}
|
222 |
+
max_salary = max_sal2
|
223 |
+
max_players = 9
|
224 |
+
else:
|
225 |
+
position_limits = {
|
226 |
+
'QB': 1,
|
227 |
+
'RB': 2,
|
228 |
+
'WR': 3,
|
229 |
+
'TE': 1,
|
230 |
+
'UTIL': 1,
|
231 |
+
'DST': 1,
|
232 |
+
# Add more as needed
|
233 |
+
}
|
234 |
+
max_salary = max_sal2
|
235 |
+
max_players = 9
|
236 |
+
|
237 |
+
stack_hold_container = st.empty()
|
238 |
+
comb_list = []
|
239 |
+
if pos_split2 == 'All Positions':
|
240 |
+
raw_baselines = raw_baselines
|
241 |
+
elif pos_split2 != 'All Positions':
|
242 |
+
raw_baselines = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var2))]
|
243 |
+
|
244 |
+
# Create a position dictionary mapping players to their eligible positions
|
245 |
+
pos_dict = dict(zip(raw_baselines.Player, raw_baselines.Position))
|
246 |
+
|
247 |
+
def is_valid_combination(combo):
|
248 |
+
# Count positions in this combination
|
249 |
+
position_counts = {pos: 0 for pos in position_limits.keys()}
|
250 |
+
|
251 |
+
# For each player in the combination
|
252 |
+
for player in combo:
|
253 |
+
# Get their eligible positions
|
254 |
+
player_positions = pos_dict[player].split('/')
|
255 |
+
|
256 |
+
# For each position they can play
|
257 |
+
for pos in player_positions:
|
258 |
+
if pos == 'UTIL':
|
259 |
+
# UTIL can be filled by any position
|
260 |
+
for p in position_counts:
|
261 |
+
position_counts[p] += 1
|
262 |
+
|
263 |
+
# Check if any position exceeds its limit
|
264 |
+
for pos, limit in position_limits.items():
|
265 |
+
if position_counts[pos] > limit:
|
266 |
+
return False
|
267 |
+
|
268 |
+
return True
|
269 |
+
|
270 |
+
# Modify the combination generation code
|
271 |
+
comb_list = []
|
272 |
+
for cur_team in team_var2:
|
273 |
+
working_baselines = raw_baselines
|
274 |
+
working_baselines = working_baselines[working_baselines['Team'] == cur_team]
|
275 |
+
working_baselines = working_baselines[working_baselines['Position'] != 'DST']
|
276 |
+
working_baselines = working_baselines[working_baselines['Position'] != 'K']
|
277 |
+
qb_var = qb_dict[cur_team]
|
278 |
+
order_list = working_baselines['Player']
|
279 |
+
|
280 |
+
comb = combinations(order_list, stack_size)
|
281 |
+
|
282 |
+
for i in list(comb):
|
283 |
+
if qb_var in i:
|
284 |
+
comb_list.append(i)
|
285 |
+
|
286 |
+
# Only add combinations that satisfy position limits
|
287 |
+
for i in list(comb):
|
288 |
+
if is_valid_combination(i):
|
289 |
+
comb_list.append(i)
|
290 |
+
|
291 |
+
comb_DF = pd.DataFrame(comb_list)
|
292 |
+
|
293 |
+
if stack_size == 3:
|
294 |
+
comb_DF['Team'] = comb_DF[0].map(team_dict)
|
295 |
+
|
296 |
+
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
|
297 |
+
comb_DF[1].map(proj_dict),
|
298 |
+
comb_DF[2].map(proj_dict)])
|
299 |
+
|
300 |
+
comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
|
301 |
+
comb_DF[1].map(cost_dict),
|
302 |
+
comb_DF[2].map(cost_dict)])
|
303 |
+
|
304 |
+
comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
|
305 |
+
comb_DF[1].map(own_dict),
|
306 |
+
comb_DF[2].map(own_dict)])
|
307 |
+
elif stack_size == 4:
|
308 |
+
comb_DF['Team'] = comb_DF[0].map(team_dict)
|
309 |
+
|
310 |
+
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
|
311 |
+
comb_DF[1].map(proj_dict),
|
312 |
+
comb_DF[2].map(proj_dict),
|
313 |
+
comb_DF[3].map(proj_dict)])
|
314 |
+
|
315 |
+
comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
|
316 |
+
comb_DF[1].map(cost_dict),
|
317 |
+
comb_DF[2].map(cost_dict),
|
318 |
+
comb_DF[3].map(cost_dict)])
|
319 |
+
|
320 |
+
comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
|
321 |
+
comb_DF[1].map(own_dict),
|
322 |
+
comb_DF[2].map(own_dict),
|
323 |
+
comb_DF[3].map(own_dict)])
|
324 |
+
elif stack_size == 5:
|
325 |
+
comb_DF['Team'] = comb_DF[0].map(team_dict)
|
326 |
+
|
327 |
+
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
|
328 |
+
comb_DF[1].map(proj_dict),
|
329 |
+
comb_DF[2].map(proj_dict),
|
330 |
+
comb_DF[3].map(proj_dict),
|
331 |
+
comb_DF[4].map(proj_dict)])
|
332 |
+
|
333 |
+
comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
|
334 |
+
comb_DF[1].map(cost_dict),
|
335 |
+
comb_DF[2].map(cost_dict),
|
336 |
+
comb_DF[3].map(cost_dict),
|
337 |
+
comb_DF[4].map(cost_dict)])
|
338 |
+
|
339 |
+
comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
|
340 |
+
comb_DF[1].map(own_dict),
|
341 |
+
comb_DF[2].map(own_dict),
|
342 |
+
comb_DF[3].map(own_dict),
|
343 |
+
comb_DF[4].map(own_dict)])
|
344 |
+
|
345 |
+
comb_DF = comb_DF.sort_values(by='Proj', ascending=False)
|
346 |
+
comb_DF = comb_DF.loc[comb_DF['Salary'] <= max_sal2]
|
347 |
+
|
348 |
+
cut_var = 0
|
349 |
+
|
350 |
+
if stack_size == 2:
|
351 |
+
while cut_var <= int(len(comb_DF)):
|
352 |
+
try:
|
353 |
+
if int(cut_var) == 0:
|
354 |
+
cur_proj = float(comb_DF.iat[cut_var, 3])
|
355 |
+
cur_own = float(comb_DF.iat[cut_var, 5])
|
356 |
+
elif int(cut_var) >= 1:
|
357 |
+
check_own = float(comb_DF.iat[cut_var, 5])
|
358 |
+
if check_own > cur_own:
|
359 |
+
comb_DF = comb_DF.drop([cut_var])
|
360 |
+
cur_own = cur_own
|
361 |
+
cut_var = cut_var - 1
|
362 |
+
comb_DF = comb_DF.reset_index()
|
363 |
+
comb_DF = comb_DF.drop(['index'], axis=1)
|
364 |
+
elif check_own <= cur_own:
|
365 |
+
cur_own = float(comb_DF.iat[cut_var, 5])
|
366 |
+
cut_var = cut_var
|
367 |
+
cut_var += 1
|
368 |
+
except:
|
369 |
+
cut_var += 1
|
370 |
+
elif stack_size == 3:
|
371 |
+
while cut_var <= int(len(comb_DF)):
|
372 |
+
try:
|
373 |
+
if int(cut_var) == 0:
|
374 |
+
cur_proj = float(comb_DF.iat[cut_var,4])
|
375 |
+
cur_own = float(comb_DF.iat[cut_var,6])
|
376 |
+
elif int(cut_var) >= 1:
|
377 |
+
check_own = float(comb_DF.iat[cut_var,6])
|
378 |
+
if check_own > cur_own:
|
379 |
+
comb_DF = comb_DF.drop([cut_var])
|
380 |
+
cur_own = cur_own
|
381 |
+
cut_var = cut_var - 1
|
382 |
+
comb_DF = comb_DF.reset_index()
|
383 |
+
comb_DF = comb_DF.drop(['index'], axis=1)
|
384 |
+
elif check_own <= cur_own:
|
385 |
+
cur_own = float(comb_DF.iat[cut_var,6])
|
386 |
+
cut_var = cut_var
|
387 |
+
cut_var += 1
|
388 |
+
except:
|
389 |
+
cut_var += 1
|
390 |
+
elif stack_size == 4:
|
391 |
+
while cut_var <= int(len(comb_DF)):
|
392 |
+
try:
|
393 |
+
if int(cut_var) == 0:
|
394 |
+
cur_proj = float(comb_DF.iat[cut_var,5])
|
395 |
+
cur_own = float(comb_DF.iat[cut_var,7])
|
396 |
+
elif int(cut_var) >= 1:
|
397 |
+
check_own = float(comb_DF.iat[cut_var,7])
|
398 |
+
if check_own > cur_own:
|
399 |
+
comb_DF = comb_DF.drop([cut_var])
|
400 |
+
cur_own = cur_own
|
401 |
+
cut_var = cut_var - 1
|
402 |
+
comb_DF = comb_DF.reset_index()
|
403 |
+
comb_DF = comb_DF.drop(['index'], axis=1)
|
404 |
+
elif check_own <= cur_own:
|
405 |
+
cur_own = float(comb_DF.iat[cut_var,7])
|
406 |
+
cut_var = cut_var
|
407 |
+
cut_var += 1
|
408 |
+
except:
|
409 |
+
cut_var += 1
|
410 |
+
elif stack_size == 5:
|
411 |
+
while cut_var <= int(len(comb_DF)):
|
412 |
+
try:
|
413 |
+
if int(cut_var) == 0:
|
414 |
+
cur_proj = float(comb_DF.iat[cut_var,6])
|
415 |
+
cur_own = float(comb_DF.iat[cut_var,8])
|
416 |
+
elif int(cut_var) >= 1:
|
417 |
+
check_own = float(comb_DF.iat[cut_var,8])
|
418 |
+
if check_own > cur_own:
|
419 |
+
comb_DF = comb_DF.drop([cut_var])
|
420 |
+
cur_own = cur_own
|
421 |
+
cut_var = cut_var - 1
|
422 |
+
comb_DF = comb_DF.reset_index()
|
423 |
+
comb_DF = comb_DF.drop(['index'], axis=1)
|
424 |
+
elif check_own <= cur_own:
|
425 |
+
cur_own = float(comb_DF.iat[cut_var,8])
|
426 |
+
cut_var = cut_var
|
427 |
+
cut_var += 1
|
428 |
+
except:
|
429 |
+
cut_var += 1
|
430 |
+
|
431 |
+
with stack_hold_container:
|
432 |
+
stack_hold_container = st.empty()
|
433 |
+
st.dataframe(comb_DF.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
434 |
+
st.download_button(
|
435 |
+
label="Export Tables",
|
436 |
+
data=convert_df_to_csv(comb_DF),
|
437 |
+
file_name='NFL_Stack_Options_export.csv',
|
438 |
+
mime='text/csv',
|
439 |
+
)
|
440 |
+
|
441 |
+
if selected_tab == 'User Upload':
|
442 |
+
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'.")
|
443 |
+
col1, col2 = st.columns([1, 5])
|
444 |
|
445 |
+
with col1:
|
446 |
+
proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
|
447 |
+
|
448 |
+
if proj_file is not None:
|
449 |
+
try:
|
450 |
+
st.session_state['proj_dataframe'] = pd.read_csv(proj_file)
|
451 |
+
except:
|
452 |
+
st.session_state['proj_dataframe'] = pd.read_excel(proj_file)
|
453 |
+
with col2:
|
454 |
+
if proj_file is not None:
|
455 |
+
st.dataframe(st.session_state['proj_dataframe'].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|