James McCool commited on
Commit
1e7a422
·
1 Parent(s): 33e0f9f

Add download options for ROO data in Streamlit app, allowing users to export both Regular and Portfolio Manager formats. Streamlined data preparation for exports based on selected slate type, enhancing user experience and data accessibility.

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +30 -14
src/streamlit_app.py CHANGED
@@ -215,15 +215,38 @@ with tab1:
215
  site_var = st.radio("Select a Site", ["Draftkings", "FanDuel"])
216
  with col3:
217
  type_var = st.radio("Select a Type", ["Full Slate", "Showdown"])
 
 
 
 
 
 
218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219
  with st.container():
220
- if type_var == "Full Slate":
221
- display = hold_display[hold_display['Site'] == site_var]
222
- display = display.drop_duplicates(subset=['Player'])
223
- elif type_var == "Showdown":
224
- display = sd_roo_data
225
- display = display.drop_duplicates(subset=['Player'])
226
-
227
  if view_var == "Simple":
228
  if type_var == "Full Slate":
229
  display = display[['Player', 'Cut_Odds', 'Salary', 'Median', '10x%', 'Own']]
@@ -236,13 +259,6 @@ with tab1:
236
  display = display
237
  display = display.set_index('Player')
238
  st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True)
239
-
240
- st.download_button(
241
- label="Export Projections",
242
- data=convert_df_to_csv(display),
243
- file_name='PGA_DFS_export.csv',
244
- mime='text/csv',
245
- )
246
 
247
  with tab2:
248
  with st.expander("Info and Filters"):
 
215
  site_var = st.radio("Select a Site", ["Draftkings", "FanDuel"])
216
  with col3:
217
  type_var = st.radio("Select a Type", ["Full Slate", "Showdown"])
218
+ if type_var == "Full Slate":
219
+ display = hold_display[hold_display['Site'] == site_var]
220
+ display = display.drop_duplicates(subset=['Player'])
221
+ elif type_var == "Showdown":
222
+ display = sd_roo_data
223
+ display = display.drop_duplicates(subset=['Player'])
224
 
225
+ export_data = display.copy()
226
+ export_data_pm = display[['Player', 'Salary', 'Median', 'Own']]
227
+ export_data_pm['Position'] = 'G'
228
+ export_data_pm['Team'] = 'Golf'
229
+ export_data_pm['captain ownership'] = ''
230
+ export_data_pm = export_data_pm.rename(columns={'Own': 'ownership', 'Median': 'median', 'Player': 'player_names', 'Position': 'position', 'Team': 'team', 'Salary': 'salary'})
231
+
232
+ reg_dl_col, pm_dl_col, blank_col = st.columns([2, 2, 6])
233
+ with reg_dl_col:
234
+ st.download_button(
235
+ label="Export ROO (Regular)",
236
+ data=convert_df_to_csv(export_data),
237
+ file_name='NBA_ROO_export.csv',
238
+ mime='text/csv',
239
+ )
240
+ with pm_dl_col:
241
+ st.download_button(
242
+ label="Export ROO (Portfolio Manager)",
243
+ data=convert_df_to_csv(export_data_pm),
244
+ file_name='NBA_ROO_export.csv',
245
+ mime='text/csv',
246
+ )
247
+
248
  with st.container():
249
+
 
 
 
 
 
 
250
  if view_var == "Simple":
251
  if type_var == "Full Slate":
252
  display = display[['Player', 'Cut_Odds', 'Salary', 'Median', '10x%', 'Own']]
 
259
  display = display
260
  display = display.set_index('Player')
261
  st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True)
 
 
 
 
 
 
 
262
 
263
  with tab2:
264
  with st.expander("Info and Filters"):