Spaces:
Running
Running
James McCool
commited on
Commit
·
92f395c
1
Parent(s):
5dc55b5
Implement character normalization and enhance data export functionality in Streamlit app. Added a new function to convert accented characters to ASCII, ensuring cleaner data exports. Updated export logic to include options for both IDs and names, with filtering capabilities based on user-defined salary constraints.
Browse files- src/streamlit_app.py +155 -17
src/streamlit_app.py
CHANGED
@@ -3,6 +3,7 @@ import numpy as np
|
|
3 |
import pandas as pd
|
4 |
import pymongo
|
5 |
import os
|
|
|
6 |
|
7 |
st.set_page_config(layout="wide")
|
8 |
|
@@ -139,15 +140,46 @@ def init_FD_lineups(type):
|
|
139 |
|
140 |
return FD_seed
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
def convert_df_to_csv(df):
|
143 |
-
|
|
|
|
|
|
|
|
|
144 |
|
145 |
@st.cache_data
|
146 |
def convert_df(array):
|
147 |
array = pd.DataFrame(array, columns=column_names)
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
roo_data, sd_roo_data, timestamp = init_baselines()
|
|
|
|
|
|
|
|
|
151 |
hold_display = roo_data
|
152 |
lineup_display = []
|
153 |
check_list = []
|
@@ -164,6 +196,10 @@ with tab1:
|
|
164 |
# i.e. clear values from both square and cube
|
165 |
st.cache_data.clear()
|
166 |
roo_data, sd_roo_data, timestamp = init_baselines()
|
|
|
|
|
|
|
|
|
167 |
dk_lineups = init_DK_lineups('Regular')
|
168 |
fd_lineups = init_FD_lineups('Regular')
|
169 |
hold_display = roo_data
|
@@ -213,6 +249,10 @@ with tab2:
|
|
213 |
if st.button("Load/Reset Data", key='reset2'):
|
214 |
st.cache_data.clear()
|
215 |
roo_data, sd_roo_data, timestamp = init_baselines()
|
|
|
|
|
|
|
|
|
216 |
hold_display = roo_data
|
217 |
dk_lineups = init_DK_lineups('Regular')
|
218 |
fd_lineups = init_FD_lineups('Regular')
|
@@ -223,6 +263,12 @@ with tab2:
|
|
223 |
col1, col2, col3, col4, col5 = st.columns(5)
|
224 |
with col1:
|
225 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
with col2:
|
228 |
slate_var1 = st.radio("Which data are you loading?", ('Regular', 'Showdown'))
|
@@ -281,20 +327,112 @@ with tab2:
|
|
281 |
salary_min_var = st.number_input("Minimum salary used", min_value = 0, max_value = 60000, value = 59000, step = 100, key = 'salary_min_var')
|
282 |
salary_max_var = st.number_input("Maximum salary used", min_value = 0, max_value = 60000, value = 60000, step = 100, key = 'salary_max_var')
|
283 |
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
|
299 |
if site_var1 == 'Draftkings':
|
300 |
if 'working_seed' in st.session_state:
|
@@ -353,7 +491,7 @@ with tab2:
|
|
353 |
st.download_button(
|
354 |
label="Export display optimals",
|
355 |
data=convert_df(export_file),
|
356 |
-
file_name='
|
357 |
mime='text/csv',
|
358 |
)
|
359 |
|
|
|
3 |
import pandas as pd
|
4 |
import pymongo
|
5 |
import os
|
6 |
+
import unicodedata
|
7 |
|
8 |
st.set_page_config(layout="wide")
|
9 |
|
|
|
140 |
|
141 |
return FD_seed
|
142 |
|
143 |
+
def normalize_special_characters(text):
|
144 |
+
"""Convert accented characters to their ASCII equivalents"""
|
145 |
+
if pd.isna(text):
|
146 |
+
return text
|
147 |
+
# Normalize unicode characters to their closest ASCII equivalents
|
148 |
+
normalized = unicodedata.normalize('NFKD', str(text))
|
149 |
+
# Remove diacritics (accents, umlauts, etc.)
|
150 |
+
ascii_text = ''.join(c for c in normalized if not unicodedata.combining(c))
|
151 |
+
return ascii_text
|
152 |
+
|
153 |
def convert_df_to_csv(df):
|
154 |
+
df_clean = df.copy()
|
155 |
+
for col in df_clean.columns:
|
156 |
+
if df_clean[col].dtype == 'object':
|
157 |
+
df_clean[col] = df_clean[col].apply(normalize_special_characters)
|
158 |
+
return df_clean.to_csv(index=False).encode('utf-8')
|
159 |
|
160 |
@st.cache_data
|
161 |
def convert_df(array):
|
162 |
array = pd.DataFrame(array, columns=column_names)
|
163 |
+
# Normalize special characters in the dataframe before export
|
164 |
+
for col in array.columns:
|
165 |
+
if array[col].dtype == 'object':
|
166 |
+
array[col] = array[col].apply(normalize_special_characters)
|
167 |
+
return array.to_csv(index=False).encode('utf-8')
|
168 |
+
|
169 |
+
@st.cache_data
|
170 |
+
def convert_pm_df(array):
|
171 |
+
array = pd.DataFrame(array)
|
172 |
+
# Normalize special characters in the dataframe before export
|
173 |
+
for col in array.columns:
|
174 |
+
if array[col].dtype == 'object':
|
175 |
+
array[col] = array[col].apply(normalize_special_characters)
|
176 |
+
return array.to_csv(index=False).encode('utf-8')
|
177 |
|
178 |
roo_data, sd_roo_data, timestamp = init_baselines()
|
179 |
+
dk_id_dict = dict(zip(roo_data['Player'], roo_data['player_id']))
|
180 |
+
dk_id_dict_sd = dict(zip(sd_roo_data['Player'], sd_roo_data['player_id']))
|
181 |
+
fd_id_dict = dict(zip(roo_data['Player'], roo_data['player_id']))
|
182 |
+
fd_id_dict_sd = dict(zip(sd_roo_data['Player'], sd_roo_data['player_id']))
|
183 |
hold_display = roo_data
|
184 |
lineup_display = []
|
185 |
check_list = []
|
|
|
196 |
# i.e. clear values from both square and cube
|
197 |
st.cache_data.clear()
|
198 |
roo_data, sd_roo_data, timestamp = init_baselines()
|
199 |
+
dk_id_dict = dict(zip(roo_data['Player'], roo_data['player_id']))
|
200 |
+
dk_id_dict_sd = dict(zip(sd_roo_data['Player'], sd_roo_data['player_id']))
|
201 |
+
fd_id_dict = dict(zip(roo_data['Player'], roo_data['player_id']))
|
202 |
+
fd_id_dict_sd = dict(zip(sd_roo_data['Player'], sd_roo_data['player_id']))
|
203 |
dk_lineups = init_DK_lineups('Regular')
|
204 |
fd_lineups = init_FD_lineups('Regular')
|
205 |
hold_display = roo_data
|
|
|
249 |
if st.button("Load/Reset Data", key='reset2'):
|
250 |
st.cache_data.clear()
|
251 |
roo_data, sd_roo_data, timestamp = init_baselines()
|
252 |
+
dk_id_dict = dict(zip(roo_data['Player'], roo_data['player_id']))
|
253 |
+
dk_id_dict_sd = dict(zip(sd_roo_data['Player'], sd_roo_data['player_id']))
|
254 |
+
fd_id_dict = dict(zip(roo_data['Player'], roo_data['player_id']))
|
255 |
+
fd_id_dict_sd = dict(zip(sd_roo_data['Player'], sd_roo_data['player_id']))
|
256 |
hold_display = roo_data
|
257 |
dk_lineups = init_DK_lineups('Regular')
|
258 |
fd_lineups = init_FD_lineups('Regular')
|
|
|
263 |
col1, col2, col3, col4, col5 = st.columns(5)
|
264 |
with col1:
|
265 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
266 |
+
if site_var1 == 'Draftkings':
|
267 |
+
id_dict = dk_id_dict.copy()
|
268 |
+
id_dict_sd = dk_id_dict_sd.copy()
|
269 |
+
elif site_var1 == 'Fanduel':
|
270 |
+
id_dict = fd_id_dict.copy()
|
271 |
+
id_dict_sd = fd_id_dict_sd.copy()
|
272 |
|
273 |
with col2:
|
274 |
slate_var1 = st.radio("Which data are you loading?", ('Regular', 'Showdown'))
|
|
|
327 |
salary_min_var = st.number_input("Minimum salary used", min_value = 0, max_value = 60000, value = 59000, step = 100, key = 'salary_min_var')
|
328 |
salary_max_var = st.number_input("Maximum salary used", min_value = 0, max_value = 60000, value = 60000, step = 100, key = 'salary_max_var')
|
329 |
|
330 |
+
reg_dl_col, filtered_dl_col, blank_dl_col = st.columns([2, 2, 6])
|
331 |
+
with reg_dl_col:
|
332 |
+
if st.button("Prepare full data export", key='data_export'):
|
333 |
+
name_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
|
334 |
+
data_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
|
335 |
+
if site_var1 == 'Draftkings':
|
336 |
+
if slate_var1 == 'Regular':
|
337 |
+
map_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6']
|
338 |
+
elif slate_var1 == 'Showdown':
|
339 |
+
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
|
340 |
+
elif site_var1 == 'Fanduel':
|
341 |
+
if slate_var1 == 'Regular':
|
342 |
+
map_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6']
|
343 |
+
elif slate_var1 == 'Showdown':
|
344 |
+
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4']
|
345 |
+
for col_idx in map_columns:
|
346 |
+
if slate_var1 == 'Regular':
|
347 |
+
data_export[col_idx] = data_export[col_idx].map(id_dict)
|
348 |
+
elif slate_var1 == 'Showdown':
|
349 |
+
data_export[col_idx] = data_export[col_idx].map(id_dict_sd)
|
350 |
+
|
351 |
+
pm_name_export = name_export.drop(columns=['salary', 'proj', 'Own'], axis=1)
|
352 |
+
pm_data_export = data_export.drop(columns=['salary', 'proj', 'Own'], axis=1)
|
353 |
+
reg_opt_col, pm_opt_col = st.columns(2)
|
354 |
+
|
355 |
+
with reg_opt_col:
|
356 |
+
st.download_button(
|
357 |
+
label="Export optimals set (IDs)",
|
358 |
+
data=convert_df(data_export),
|
359 |
+
file_name='PGA_optimals_export.csv',
|
360 |
+
mime='text/csv',
|
361 |
+
)
|
362 |
+
st.download_button(
|
363 |
+
label="Export optimals set (Names)",
|
364 |
+
data=convert_df(name_export),
|
365 |
+
file_name='PGA_optimals_export.csv',
|
366 |
+
mime='text/csv',
|
367 |
+
)
|
368 |
+
with pm_opt_col:
|
369 |
+
st.download_button(
|
370 |
+
label="Portfolio Manager Export (IDs)",
|
371 |
+
data=convert_pm_df(pm_data_export),
|
372 |
+
file_name='PGA_optimals_export.csv',
|
373 |
+
mime='text/csv',
|
374 |
+
)
|
375 |
+
st.download_button(
|
376 |
+
label="Portfolio Manager Export (Names)",
|
377 |
+
data=convert_pm_df(pm_name_export),
|
378 |
+
file_name='PGA_optimals_export.csv',
|
379 |
+
mime='text/csv',
|
380 |
+
)
|
381 |
+
with filtered_dl_col:
|
382 |
+
if st.button("Prepare full data export (Filtered)", key='data_export_filtered'):
|
383 |
+
name_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
|
384 |
+
data_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
|
385 |
+
if site_var1 == 'Draftkings':
|
386 |
+
if slate_var1 == 'Regular':
|
387 |
+
map_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6']
|
388 |
+
elif slate_var1 == 'Showdown':
|
389 |
+
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
|
390 |
+
elif site_var1 == 'Fanduel':
|
391 |
+
if slate_var1 == 'Regular':
|
392 |
+
map_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6']
|
393 |
+
elif slate_var1 == 'Showdown':
|
394 |
+
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4']
|
395 |
+
for col_idx in map_columns:
|
396 |
+
if slate_var1 == 'Regular':
|
397 |
+
data_export[col_idx] = data_export[col_idx].map(id_dict)
|
398 |
+
elif slate_var1 == 'Showdown':
|
399 |
+
data_export[col_idx] = data_export[col_idx].map(id_dict_sd)
|
400 |
+
data_export = data_export[data_export['salary'] >= salary_min_var]
|
401 |
+
data_export = data_export[data_export['salary'] <= salary_max_var]
|
402 |
+
|
403 |
+
name_export = name_export[name_export['salary'] >= salary_min_var]
|
404 |
+
name_export = name_export[name_export['salary'] <= salary_max_var]
|
405 |
+
|
406 |
+
pm_name_export = name_export.drop(columns=['salary', 'proj', 'Own'], axis=1)
|
407 |
+
pm_data_export = data_export.drop(columns=['salary', 'proj', 'Own'], axis=1)
|
408 |
+
|
409 |
+
reg_opt_col, pm_opt_col = st.columns(2)
|
410 |
+
with reg_opt_col:
|
411 |
+
st.download_button(
|
412 |
+
label="Export optimals set (IDs)",
|
413 |
+
data=convert_df(data_export),
|
414 |
+
file_name='PGA_optimals_export.csv',
|
415 |
+
mime='text/csv',
|
416 |
+
)
|
417 |
+
st.download_button(
|
418 |
+
label="Export optimals set (Names)",
|
419 |
+
data=convert_df(name_export),
|
420 |
+
file_name='PGA_optimals_export.csv',
|
421 |
+
mime='text/csv',
|
422 |
+
)
|
423 |
+
with pm_opt_col:
|
424 |
+
st.download_button(
|
425 |
+
label="Portfolio Manager Export (IDs)",
|
426 |
+
data=convert_pm_df(pm_data_export),
|
427 |
+
file_name='PGA_optimals_export.csv',
|
428 |
+
mime='text/csv',
|
429 |
+
)
|
430 |
+
st.download_button(
|
431 |
+
label="Portfolio Manager Export (Names)",
|
432 |
+
data=convert_pm_df(pm_name_export),
|
433 |
+
file_name='PGA_optimals_export.csv',
|
434 |
+
mime='text/csv',
|
435 |
+
)
|
436 |
|
437 |
if site_var1 == 'Draftkings':
|
438 |
if 'working_seed' in st.session_state:
|
|
|
491 |
st.download_button(
|
492 |
label="Export display optimals",
|
493 |
data=convert_df(export_file),
|
494 |
+
file_name='PGA_display_optimals.csv',
|
495 |
mime='text/csv',
|
496 |
)
|
497 |
|