Multichem commited on
Commit
7d0a170
·
1 Parent(s): 9a551ae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -400
app.py CHANGED
@@ -42,411 +42,37 @@ master_hold = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqr
42
  @st.cache_resource(ttl = 300)
43
  def init_baselines():
44
  sh = gcservice_account.open_by_url(master_hold)
45
- worksheet = sh.worksheet('Betting Model Clean')
46
- raw_display = pd.DataFrame(worksheet.get_all_records())
47
- raw_display.replace('#DIV/0!', np.nan, inplace=True)
48
- game_model = raw_display.dropna()
49
-
50
- worksheet = sh.worksheet('DK_Build_Up')
51
- raw_display = pd.DataFrame(worksheet.get_all_records())
52
- raw_display.replace('', np.nan, inplace=True)
53
- raw_display.rename(columns={"Name": "Player"}, inplace = True)
54
- raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Minutes', '3P', 'Points', 'Rebounds', 'Assists', 'Steals', 'Blocks', 'Turnovers', 'Fantasy']]
55
- player_stats = raw_display[raw_display['Minutes'] > 0]
56
-
57
- worksheet = sh.worksheet('Timestamp')
58
- timestamp = worksheet.acell('A1').value
59
 
60
- worksheet = sh.worksheet('Prop_Frame')
61
  raw_display = pd.DataFrame(worksheet.get_all_records())
62
  raw_display.replace('', np.nan, inplace=True)
63
- prop_frame = raw_display.dropna()
 
 
64
 
65
- return game_model, player_stats, prop_frame, timestamp
66
 
67
  def convert_df_to_csv(df):
68
  return df.to_csv().encode('utf-8')
69
 
70
- game_model, player_stats, prop_frame, timestamp = init_baselines()
71
- t_stamp = f"Last Update: " + str(timestamp) + f" CST"
72
-
73
- tab1, tab2, tab3, tab4 = st.tabs(["Game Betting Model", "Player Projections", "Player Prop Simulations", "Stat Specific Simulations"])
74
-
75
- with tab1:
76
- st.info(t_stamp)
77
- if st.button("Reset Data", key='reset1'):
78
- st.cache_data.clear()
79
- game_model, player_stats, prop_frame, timestamp = init_baselines()
80
- t_stamp = f"Last Update: " + str(timestamp) + f" CST"
81
- line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
82
- team_frame = game_model
83
- if line_var1 == 'Percentage':
84
- team_frame = team_frame[['Team', 'Opp', 'Team Points', 'Opp Points', 'Proj Total', 'Proj Spread', 'Proj Winner', 'Win%']]
85
- team_frame = team_frame.set_index('Team')
86
- st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
87
- if line_var1 == 'American':
88
- team_frame = team_frame[['Team', 'Opp', 'Team Points', 'Opp Points', 'Proj Total', 'Proj Spread', 'Proj Winner', 'Odds Line']]
89
- team_frame = team_frame.set_index('Team')
90
- st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
91
-
92
- st.download_button(
93
- label="Export Team Model",
94
- data=convert_df_to_csv(team_frame),
95
- file_name='NBA_team_betting_export.csv',
96
- mime='text/csv',
97
- key='team_export',
98
- )
99
-
100
- with tab2:
101
- st.info(t_stamp)
102
- if st.button("Reset Data", key='reset2'):
103
- st.cache_data.clear()
104
- game_model, player_stats, prop_frame, timestamp = init_baselines()
105
- t_stamp = f"Last Update: " + str(timestamp) + f" CST"
106
- split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
107
- if split_var1 == 'Specific Teams':
108
- team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = player_stats['Team'].unique(), key='team_var1')
109
- elif split_var1 == 'All':
110
- team_var1 = player_stats.Team.values.tolist()
111
- player_stats = player_stats[player_stats['Team'].isin(team_var1)]
112
- player_stats_disp = player_stats.set_index('Player')
113
- player_stats_disp = player_stats_disp.sort_values(by='Fantasy', ascending=False)
114
- st.dataframe(player_stats_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
115
- st.download_button(
116
- label="Export Prop Model",
117
- data=convert_df_to_csv(player_stats),
118
- file_name='NBA_stats_export.csv',
119
- mime='text/csv',
120
- )
121
-
122
- with tab3:
123
- st.info(t_stamp)
124
- if st.button("Reset Data", key='reset3'):
125
- st.cache_data.clear()
126
- game_model, player_stats, prop_frame, timestamp = init_baselines()
127
- t_stamp = f"Last Update: " + str(timestamp) + f" CST"
128
- col1, col2 = st.columns([1, 5])
129
-
130
- with col2:
131
- df_hold_container = st.empty()
132
- info_hold_container = st.empty()
133
- plot_hold_container = st.empty()
134
-
135
- with col1:
136
- player_check = st.selectbox('Select player to simulate props', options = player_stats['Player'].unique())
137
- prop_type_var = st.selectbox('Select type of prop to simulate', options = ['points', 'threes', 'rebounds', 'assists', 'blocks', 'steals',
138
- 'PRA', 'points+rebounds', 'points+assists', 'rebounds+assists'])
139
-
140
- ou_var = st.selectbox('Select wether it is an over or under', options = ['Over', 'Under'])
141
- if prop_type_var == 'points':
142
- prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 15.5, step = .5)
143
- elif prop_type_var == 'threes':
144
- prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
145
- elif prop_type_var == 'rebounds':
146
- prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 25.5, value = 5.5, step = .5)
147
- elif prop_type_var == 'assists':
148
- prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 25.5, value = 5.5, step = .5)
149
- elif prop_type_var == 'blocks':
150
- prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
151
- elif prop_type_var == 'steals':
152
- prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
153
- elif prop_type_var == 'PRA':
154
- prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 65.5, value = 20.5, step = .5)
155
- elif prop_type_var == 'points+rebounds':
156
- prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
157
- elif prop_type_var == 'points+assists':
158
- prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
159
- elif prop_type_var == 'rebounds+assists':
160
- prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
161
- line_var = st.number_input('Type in the line on the prop (i.e. -120)', min_value = -1500, max_value = 1500, value = -150, step = 1)
162
- line_var = line_var + 1
163
-
164
- if st.button('Simulate Prop'):
165
- with col2:
166
-
167
- with df_hold_container.container():
168
-
169
- df = player_stats
170
-
171
- total_sims = 5000
172
-
173
- df.replace("", 0, inplace=True)
174
-
175
- player_var = df.loc[df['Player'] == player_check]
176
- player_var = player_var.reset_index()
177
-
178
- if prop_type_var == 'points':
179
- df['Median'] = df['Points']
180
- elif prop_type_var == 'threes':
181
- df['Median'] = df['3P']
182
- elif prop_type_var == 'rebounds':
183
- df['Median'] = df['Rebounds']
184
- elif prop_type_var == 'assists':
185
- df['Median'] = df['Assists']
186
- elif prop_type_var == 'blocks':
187
- df['Median'] = df['Blocks']
188
- elif prop_type_var == 'steals':
189
- df['Median'] = df['Steals']
190
- elif prop_type_var == 'PRA':
191
- df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
192
- elif prop_type_var == 'points+rebounds':
193
- df['Median'] = df['Points'] + df['Rebounds']
194
- elif prop_type_var == 'points+assists':
195
- df['Median'] = df['Points'] + df['Assists']
196
- elif prop_type_var == 'rebounds+assists':
197
- df['Median'] = df['Assists'] + df['Rebounds']
198
-
199
- flex_file = df
200
- flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
201
- flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
202
- flex_file['STD'] = (flex_file['Median']/4)
203
- flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
204
-
205
- hold_file = flex_file
206
- overall_file = flex_file
207
- salary_file = flex_file
208
-
209
- overall_players = overall_file[['Player']]
210
-
211
- for x in range(0,total_sims):
212
- overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
213
-
214
- overall_file=overall_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
215
- overall_file.astype('int').dtypes
216
-
217
- players_only = hold_file[['Player']]
218
-
219
- player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
220
-
221
- players_only['Mean_Outcome'] = overall_file.mean(axis=1)
222
- players_only['10%'] = overall_file.quantile(0.1, axis=1)
223
- players_only['90%'] = overall_file.quantile(0.9, axis=1)
224
- if ou_var == 'Over':
225
- players_only['beat_prop'] = overall_file[overall_file > prop_var].count(axis=1)/float(total_sims)
226
- elif ou_var == 'Under':
227
- players_only['beat_prop'] = (overall_file[overall_file < prop_var].count(axis=1)/float(total_sims))
228
-
229
- players_only['implied_odds'] = np.where(line_var <= 0, (-(line_var)/((-(line_var))+100)), 100/(line_var+100))
230
-
231
- players_only['Player'] = hold_file[['Player']]
232
-
233
- final_outcomes = players_only[['Player', '10%', 'Mean_Outcome', '90%', 'implied_odds', 'beat_prop']]
234
- final_outcomes['Bet?'] = np.where(final_outcomes['beat_prop'] - final_outcomes['implied_odds'] >= .10, "Bet", "No Bet")
235
- final_outcomes = final_outcomes.loc[final_outcomes['Player'] == player_check]
236
- player_outcomes = player_outcomes.loc[player_outcomes['Player'] == player_check]
237
- player_outcomes = player_outcomes.drop(columns=['Player']).transpose()
238
- player_outcomes = player_outcomes.reset_index()
239
- player_outcomes.columns = ['Instance', 'Outcome']
240
-
241
- x1 = player_outcomes.Outcome.to_numpy()
242
-
243
- print(x1)
244
-
245
- hist_data = [x1]
246
-
247
- group_labels = ['player outcomes']
248
-
249
- fig = px.histogram(
250
- player_outcomes, x='Outcome')
251
- fig.add_vline(x=prop_var, line_dash="dash", line_color="green")
252
-
253
- with df_hold_container:
254
- df_hold_container = st.empty()
255
- format_dict = {'10%': '{:.2f}', 'Mean_Outcome': '{:.2f}','90%': '{:.2f}', 'beat_prop': '{:.2%}','implied_odds': '{:.2%}'}
256
- st.dataframe(final_outcomes.style.format(format_dict), use_container_width = True)
257
-
258
- with info_hold_container:
259
- st.info('The Y-axis is the percent of times in simulations that the player reaches certain thresholds, while the X-axis is the threshold to be met. The Green dotted line is the prop you entered. You can hover over any spot and see the percent to reach that mark.')
260
-
261
- with plot_hold_container:
262
- st.dataframe(player_outcomes, use_container_width = True)
263
- plot_hold_container = st.empty()
264
- st.plotly_chart(fig, use_container_width=True)
265
-
266
- with tab4:
267
- st.info(t_stamp)
268
- st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
269
- if st.button("Reset Data/Load Data", key='reset5'):
270
- st.cache_data.clear()
271
- game_model, player_stats, prop_frame, timestamp = init_baselines()
272
- t_stamp = f"Last Update: " + str(timestamp) + f" CST"
273
- col1, col2 = st.columns([1, 5])
274
-
275
- with col2:
276
- df_hold_container = st.empty()
277
- info_hold_container = st.empty()
278
- plot_hold_container = st.empty()
279
- export_container = st.empty()
280
-
281
- with col1:
282
- prop_type_var = st.selectbox('Select prop category', options = ['points', 'rebounds', 'assists', 'PRA', 'points+rebounds', 'points+assists', 'rebounds+assists'])
283
-
284
- if st.button('Simulate Prop Category'):
285
- with col2:
286
-
287
- with df_hold_container.container():
288
-
289
- if prop_type_var == "points":
290
- prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
291
- prop_df = prop_df.loc[prop_df['prop_type'] == 'points']
292
- prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
293
- prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
294
- prop_df = prop_df.loc[prop_df['Prop'] != 0]
295
- st.table(prop_df)
296
- prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
297
- prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
298
- df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
299
- elif prop_type_var == "rebounds":
300
- prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
301
- prop_df = prop_df.loc[prop_df['prop_type'] == 'rebounds']
302
- prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
303
- prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
304
- prop_df = prop_df.loc[prop_df['Prop'] != 0]
305
- st.table(prop_df)
306
- prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
307
- prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
308
- df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
309
- elif prop_type_var == "assists":
310
- prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
311
- prop_df = prop_df.loc[prop_df['prop_type'] == 'assists']
312
- prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
313
- prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
314
- prop_df = prop_df.loc[prop_df['Prop'] != 0]
315
- st.table(prop_df)
316
- prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
317
- prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
318
- df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
319
- elif prop_type_var == "PRA":
320
- prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
321
- prop_df = prop_df.loc[prop_df['prop_type'] == 'PRA']
322
- prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
323
- prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
324
- prop_df = prop_df.loc[prop_df['Prop'] != 0]
325
- st.table(prop_df)
326
- prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
327
- prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
328
- df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
329
- elif prop_type_var == "points+rebounds":
330
- prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
331
- prop_df = prop_df.loc[prop_df['prop_type'] == 'points+rebounds']
332
- prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
333
- prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
334
- prop_df = prop_df.loc[prop_df['Prop'] != 0]
335
- st.table(prop_df)
336
- prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
337
- prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
338
- df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
339
- elif prop_type_var == "points+assists":
340
- prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
341
- prop_df = prop_df.loc[prop_df['prop_type'] == 'points+assists']
342
- prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
343
- prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
344
- prop_df = prop_df.loc[prop_df['Prop'] != 0]
345
- st.table(prop_df)
346
- prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
347
- prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
348
- df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
349
- elif prop_type_var == "rebounds+assists":
350
- prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
351
- prop_df = prop_df.loc[prop_df['prop_type'] == 'rebounds+assists']
352
- prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
353
- prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
354
- prop_df = prop_df.loc[prop_df['Prop'] != 0]
355
- st.table(prop_df)
356
- prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
357
- prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
358
- df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
359
-
360
- prop_dict = dict(zip(df.Player, df.Prop))
361
- over_dict = dict(zip(df.Player, df.Over))
362
- under_dict = dict(zip(df.Player, df.Under))
363
-
364
- total_sims = 5000
365
-
366
- df.replace("", 0, inplace=True)
367
-
368
- if prop_type_var == 'points':
369
- df['Median'] = df['Points']
370
- elif prop_type_var == 'rebounds':
371
- df['Median'] = df['Rebounds']
372
- elif prop_type_var == 'assists':
373
- df['Median'] = df['Assists']
374
- elif prop_type_var == 'PRA':
375
- df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
376
- elif prop_type_var == 'points+rebounds':
377
- df['Median'] = df['Points'] + df['Rebounds']
378
- elif prop_type_var == 'points+assists':
379
- df['Median'] = df['Points'] + df['Assists']
380
- elif prop_type_var == 'rebounds+assists':
381
- df['Median'] = df['Assists'] + df['Rebounds']
382
-
383
- flex_file = df
384
- flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
385
- flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
386
- flex_file['STD'] = (flex_file['Median']/4)
387
- flex_file['Prop'] = flex_file['Player'].map(prop_dict)
388
- flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
389
-
390
- hold_file = flex_file
391
- overall_file = flex_file
392
- prop_file = flex_file
393
-
394
- overall_players = overall_file[['Player']]
395
-
396
- for x in range(0,total_sims):
397
- prop_file[x] = prop_file['Prop']
398
-
399
- prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
400
-
401
- for x in range(0,total_sims):
402
- overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
403
-
404
- overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
405
-
406
- players_only = hold_file[['Player']]
407
-
408
- player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
409
-
410
- prop_check = (overall_file - prop_file)
411
-
412
- players_only['Mean_Outcome'] = overall_file.mean(axis=1)
413
- players_only['10%'] = overall_file.quantile(0.1, axis=1)
414
- players_only['90%'] = overall_file.quantile(0.9, axis=1)
415
- players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
416
- players_only['Imp Over'] = players_only['Player'].map(over_dict)
417
- players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
418
- players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
419
- players_only['Imp Under'] = players_only['Player'].map(under_dict)
420
- players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
421
- players_only['Prop'] = players_only['Player'].map(prop_dict)
422
- players_only['Prop_avg'] = players_only['Prop'].mean() / 100
423
- players_only['prop_threshold'] = .10
424
- players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
425
- players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
426
- players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
427
- players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
428
- players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
429
- players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
430
- players_only['Edge'] = players_only['Bet_check']
431
-
432
- players_only['Player'] = hold_file[['Player']]
433
-
434
- final_outcomes = players_only[['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
435
-
436
- final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
437
-
438
- final_outcomes = final_outcomes.set_index('Player')
439
-
440
- with df_hold_container:
441
- df_hold_container = st.empty()
442
- st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
443
- with export_container:
444
- export_container = st.empty()
445
- st.download_button(
446
- label="Export Projections",
447
- data=convert_df_to_csv(final_outcomes),
448
- file_name='Nba_prop_proj.csv',
449
- mime='text/csv',
450
- key='prop_proj',
451
- )
452
-
 
42
  @st.cache_resource(ttl = 300)
43
  def init_baselines():
44
  sh = gcservice_account.open_by_url(master_hold)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
+ worksheet = sh.worksheet('Arturo Props')
47
  raw_display = pd.DataFrame(worksheet.get_all_records())
48
  raw_display.replace('', np.nan, inplace=True)
49
+ raw_display = raw_display[['Player', 'Pos', 'Team', 'Opponent', 'Min', 'mpgL3', 'Diff', 'Status', 'Pts', 'Rbs', 'Asst', 'TOs', '3PM',
50
+ 'Steals', 'Blk', 'FD', 'DK']]
51
+ player_stats = raw_display[raw_display['Min'] > 0]
52
 
53
+ return player_stats
54
 
55
  def convert_df_to_csv(df):
56
  return df.to_csv().encode('utf-8')
57
 
58
+ player_stats = init_baselines()
59
+
60
+ st.info(t_stamp)
61
+ if st.button("Reset Data", key='reset2'):
62
+ st.cache_data.clear()
63
+ player_stats = init_baselines()
64
+ split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
65
+ if split_var1 == 'Specific Teams':
66
+ team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = player_stats['Team'].unique(), key='team_var1')
67
+ elif split_var1 == 'All':
68
+ team_var1 = player_stats.Team.values.tolist()
69
+ player_stats = player_stats[player_stats['Team'].isin(team_var1)]
70
+ player_stats_disp = player_stats.set_index('Player')
71
+ player_stats_disp = player_stats_disp.sort_values(by='Team', ascending=False)
72
+ st.dataframe(player_stats_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
73
+ st.download_button(
74
+ label="Export Prop Model",
75
+ data=convert_df_to_csv(player_stats),
76
+ file_name='AmericanNumbers_stats_export.csv',
77
+ mime='text/csv',
78
+ )