Update app.py
Browse files
app.py
CHANGED
@@ -51,78 +51,71 @@ NBABettingModel = 'https://docs.google.com/spreadsheets/d/1WBnvOHQi_zVTGF63efejK
|
|
51 |
|
52 |
@st.cache_resource(ttl = 300)
|
53 |
def init_baselines():
|
54 |
-
sh = gcservice_account.open_by_url(
|
55 |
|
56 |
-
worksheet = sh.worksheet('
|
57 |
raw_display = pd.DataFrame(worksheet.get_values())
|
58 |
raw_display.columns = raw_display.iloc[0]
|
59 |
raw_display = raw_display[1:]
|
60 |
raw_display = raw_display.reset_index(drop=True)
|
61 |
raw_display.replace('', np.nan, inplace=True)
|
62 |
-
raw_display = raw_display[['NBAID', 'PID', 'Player', 'TC', 'MP (Today)', 'Next Game', 'H/R', 'Injury Notes', 'Player Impact per 48', 'Player Impact',
|
63 |
-
'Team PM', 'Last Updated']]
|
64 |
raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
|
65 |
-
|
66 |
-
|
67 |
-
sh = gcservice_account.open_by_url(NBABettingModel)
|
68 |
|
69 |
-
worksheet = sh.worksheet('
|
70 |
raw_display = pd.DataFrame(worksheet.get_values())
|
71 |
raw_display.columns = raw_display.iloc[0]
|
72 |
raw_display = raw_display[1:]
|
73 |
raw_display = raw_display.reset_index(drop=True)
|
74 |
raw_display.replace('', 0, inplace=True)
|
75 |
-
raw_display = raw_display[['PID', 'Player', 'Team', 'Avg Minutes last 30 days for team', 'Minutes Projection', 'Rotation Impact (versus last 30 days)',
|
76 |
-
'Injury Notes', 'Minute Change', 'Baseline Team PM', 'Net Rotation PM +/- for Team', 'Projected PM for Game', 'Offset', 'Rank']]
|
77 |
-
raw_display['Minute Change'].replace('+', '', inplace=True)
|
78 |
raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
|
79 |
-
|
80 |
|
81 |
-
return
|
82 |
|
83 |
def convert_df_to_csv(df):
|
84 |
return df.to_csv().encode('utf-8')
|
85 |
|
86 |
-
|
87 |
|
88 |
-
tab1, tab2 = st.tabs(["
|
89 |
|
90 |
with tab1:
|
91 |
if st.button("Reset Data", key='reset1'):
|
92 |
st.cache_data.clear()
|
93 |
-
|
94 |
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
|
95 |
if split_var1 == 'Specific Teams':
|
96 |
-
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options =
|
97 |
elif split_var1 == 'All':
|
98 |
-
team_var1 =
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
st.dataframe(player_min_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
103 |
st.download_button(
|
104 |
-
label="Export
|
105 |
-
data=convert_df_to_csv(
|
106 |
-
file_name='
|
107 |
mime='text/csv',
|
108 |
)
|
109 |
|
110 |
with tab2:
|
111 |
if st.button("Reset Data", key='reset2'):
|
112 |
st.cache_data.clear()
|
113 |
-
|
114 |
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
115 |
if split_var2 == 'Specific Teams':
|
116 |
-
team_var2 = st.multiselect('Which teams would you like to include in the tables?', options =
|
117 |
elif split_var2 == 'All':
|
118 |
-
team_var2 =
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
st.dataframe(
|
123 |
st.download_button(
|
124 |
-
label="Export
|
125 |
-
data=convert_df_to_csv(
|
126 |
-
file_name='
|
127 |
mime='text/csv',
|
128 |
)
|
|
|
51 |
|
52 |
@st.cache_resource(ttl = 300)
|
53 |
def init_baselines():
|
54 |
+
sh = gcservice_account.open_by_url(NBABettingModel)
|
55 |
|
56 |
+
worksheet = sh.worksheet('ExportTable')
|
57 |
raw_display = pd.DataFrame(worksheet.get_values())
|
58 |
raw_display.columns = raw_display.iloc[0]
|
59 |
raw_display = raw_display[1:]
|
60 |
raw_display = raw_display.reset_index(drop=True)
|
61 |
raw_display.replace('', np.nan, inplace=True)
|
|
|
|
|
62 |
raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
|
63 |
+
raw_display['Team Date'] = raw_display['Team'] + " " + raw_display['Date'].astype(str)
|
64 |
+
game_model = raw_display[raw_display['Date'] != ""]
|
|
|
65 |
|
66 |
+
worksheet = sh.worksheet('SeasonExport')
|
67 |
raw_display = pd.DataFrame(worksheet.get_values())
|
68 |
raw_display.columns = raw_display.iloc[0]
|
69 |
raw_display = raw_display[1:]
|
70 |
raw_display = raw_display.reset_index(drop=True)
|
71 |
raw_display.replace('', 0, inplace=True)
|
|
|
|
|
|
|
72 |
raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
|
73 |
+
season_model = raw_display[raw_display['Team'] != ""]
|
74 |
|
75 |
+
return game_model, season_model
|
76 |
|
77 |
def convert_df_to_csv(df):
|
78 |
return df.to_csv().encode('utf-8')
|
79 |
|
80 |
+
game_model, season_model = init_baselines()
|
81 |
|
82 |
+
tab1, tab2 = st.tabs(["Game Betting Model", "Season and Futures"])
|
83 |
|
84 |
with tab1:
|
85 |
if st.button("Reset Data", key='reset1'):
|
86 |
st.cache_data.clear()
|
87 |
+
game_model, season_model = init_baselines()
|
88 |
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
|
89 |
if split_var1 == 'Specific Teams':
|
90 |
+
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = game_model['Team'].unique(), key='team_var1')
|
91 |
elif split_var1 == 'All':
|
92 |
+
team_var1 = game_model.Team.values.tolist()
|
93 |
+
game_model = game_model[game_model['Team'].isin(team_var1)]
|
94 |
+
game_display = game_model.set_index('Team')
|
95 |
+
st.dataframe(game_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
|
|
96 |
st.download_button(
|
97 |
+
label="Export Game Model",
|
98 |
+
data=convert_df_to_csv(game_model),
|
99 |
+
file_name='AmericanNumbers_Game_Model_export.csv',
|
100 |
mime='text/csv',
|
101 |
)
|
102 |
|
103 |
with tab2:
|
104 |
if st.button("Reset Data", key='reset2'):
|
105 |
st.cache_data.clear()
|
106 |
+
game_model, season_model = init_baselines()
|
107 |
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
108 |
if split_var2 == 'Specific Teams':
|
109 |
+
team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = season_model['Team'].unique(), key='team_var2')
|
110 |
elif split_var2 == 'All':
|
111 |
+
team_var2 = season_model.Team.values.tolist()
|
112 |
+
season_model = season_model[season_model['Team'].isin(team_var2)]
|
113 |
+
season_display = season_model.set_index('Team')
|
114 |
+
season_display = season_display.sort_values(by=['Win Projection Now'], ascending=False)
|
115 |
+
st.dataframe(season_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
116 |
st.download_button(
|
117 |
+
label="Export Futures Model",
|
118 |
+
data=convert_df_to_csv(season_model),
|
119 |
+
file_name='AmericanNumbers_Season_Futures.csv',
|
120 |
mime='text/csv',
|
121 |
)
|