Multichem's picture
Update app.py
dd00607
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import plotly.express as px
import random
import gc
@st.cache_resource
def init_conn():
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
credentials = {
"type": "service_account",
"project_id": "dfsnew",
"private_key_id": "2432f6c3771f70a410c5c878d1359869fc9dddc8",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQDBNBDU2aJuEr6n\ne0o7pDY8gjg1+g1e3oHlpyY/CHMByZuEwfXewsZYP/TApfr8zxXDNG9X31CloWXH\n6ef8H0h6TjhRppE/2YCUZlbgtvpwlDg+1aKTKY5Lc/L937I6V512mgMDhDmTwX+p\noV0vhPuJnyFy+Fuo+xu8D9A46lhTTIK4EZhHc04SUBxUI3pDdfvuMbjciD/Pskn2\nMwBSEG/FQoe4GYrSmm7jzYdSHItVBakr26xl117m8BrIuceU7IEWrnJGDza8TtTZ\n+4Wp7PY9v6DgVt2+rnnDaF/g7kocLqoj2xWp1eS7OALwmqaIPFljIUkL5AJJiLC1\n+/ve6iwVAgMBAAECggEADTFsPdCvwBL9HGw1nT2BK6AbzQnKfHI2zhMcMD04N0TI\nXygsjT3hM/kIElizOyy7+HS97rLz65+KFvzwx71uIlXxkBfO/txwJJIZeCZeky33\n6kiF3cU+b4YXL4FlRwkhGk55irWuhdm2iUOY3KwYziTE8LgncDJXij/NMPnFtshZ\n/2Dc/7sKLi1tna5tfXr5v4N7LhyFOfHme8ZSZIhnpV+WnFM/VAVghwi+3vfzeV+a\nVgvv+QwRUBF+MYpoW8aDw3Y1jKuKKxcG0qHR1mQQTDK6eAymy28lJ9LfgKkZBLS3\nVEGH8O+gLQj2l8VR8koRxA1FETJ9BnIiV4OF+uLQQQKBgQDyYkeBnpPKnw3MXKgy\nxtpt7hLdrrQiR69PHEvHj9z6b60KTH9jDMKcbCU/ouwbTtLQnvtwta2RoWD/1xk+\n3uaeQv/jOtgKGE+Sa0FvJuDWZwBfUORnyqb+s5G9MpVlqNLLkUmE5myyrDbFdxei\nwzisIjvQxtJDLB3pucTRyd6a1QKBgQDMDoWUfNpQI/up3r0RWVCl3odpwOMnpN0S\nhf8uLyvEvtbcMnpxCQCl+4KWnOiX4GH4N9sZGF8YTPazO2Kd85/GioUoNo5u6vJo\ncxD0BTvg5meyUjfZsmuU620/eVQBa88TRdo3isLmBqUp7SAC+g4vTHpgxn00dRYv\neSfZN0dsQQKBgQDkxR34mVOkyrqbSFj4k/dWCn6D/YDHWiF86ZgcowxO01jff5Q8\nSK7mNKxzg7KVk7Amd+eaWd+YtFh5IOwTCw9gEJy0O7Xs0UVJTTJVVryfoFgZnp/1\n1rAHdjT3/eZELTPILzjU1yeA/Eo11lHYramvzh/mzcFm5RzWnR/HYmFYgQKBgFOy\nbSX/pAgVCkedvc0c5lBymvZMkJ+VJrxPS+Ckpn43jKea6M/uUl7Cb8jZKSoKdgS6\n3FpJvc+Y2eOgKw4AfHuSG5Xn8roaEj23XK/KacoQl130DUZ0wV2+xvuvBz7h+ni8\nQQphFxoEhcBRq7ys1h6ebt+86mQW1ne4aRjWbKxBAoGARA+rBNIC9Z1vyRzMAXfj\nnQ9/wShd/NGpVRNrm7sdUastfoyK8Ip3HkJac3xE1ARpQTvxAz742mdeDxPWI8wZ\nHDsjIrRqGLKMN7tSIoM720y6PY/Tsg89SdY4y0h6M75rrEi4Lv5b7s4EmqAZdfKT\nbEyuT7sCPCLeOX/RLy/lCpA=\n-----END PRIVATE KEY-----\n",
"client_email": "[email protected]",
"client_id": "105107448378741046480",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/dfsapps%40dfsnew.iam.gserviceaccount.com",
"universe_domain": "googleapis.com"
}
header= {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) '
'AppleWebKit/537.11 (KHTML, like Gecko) '
'Chrome/23.0.1271.64 Safari/537.11',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3',
'Accept-Encoding': 'none',
'Accept-Language': 'en-US,en;q=0.8',
'Connection': 'keep-alive'}
gc_con = gspread.service_account_from_dict(credentials, scope)
return gc_con
gcservice_account = init_conn()
NBAGetGameData = 'https://docs.google.com/spreadsheets/d/1tRQrF_I5rS7Q0g9vE8NrENDZ2P3_DvtbBZzKEakwOI0/edit#gid=1373653837'
NCAAMensBasketball = 'https://docs.google.com/spreadsheets/d/1flWwlx1T7Xu68AjOkeq7u4Y7nWzukZzKTEI17RJ6MfE/edit#gid=1975368022'
NBABettingModel = 'https://docs.google.com/spreadsheets/d/1WBnvOHQi_zVTGF63efejK5ho02AY00HiYrMHnMJXY1E/edit#gid=1157978351'
game_format = {'Injury and Rotation Adjusted Win %': '{:.2%}'}
percentages_format = {'Playoff Odds': '{:.2%}', 'Division Odds': '{:.2%}', 'Top 4 Seed Odds': '{:.2%}', '1 Seed Odds': '{:.2%}', 'Win 1st Round': '{:.2%}',
'Win 2nd Round': '{:.2%}', 'Win Conference': '{:.2%}', 'Win Title': '{:.2%}', '1': '{:.2%}', '2': '{:.2%}', '3': '{:.2%}',
'4': '{:.2%}', '5': '{:.2%}', '6': '{:.2%}', '7': '{:.2%}', '8': '{:.2%}', '9': '{:.2%}', '10': '{:.2%}', '11': '{:.2%}',
'12': '{:.2%}', '13': '{:.2%}', '14': '{:.2%}', '15': '{:.2%}'}
@st.cache_resource(ttl = 300)
def init_baselines():
sh = gcservice_account.open_by_url(NCAAMensBasketball)
worksheet = sh.worksheet('ActiveBets')
raw_display = pd.DataFrame(worksheet.get_values())
raw_display.columns = raw_display.iloc[0]
raw_display = raw_display[1:]
raw_display = raw_display.reset_index(drop=True)
raw_display.replace('', np.nan, inplace=True)
raw_display['Edge for Moneyline'] = np.where(raw_display['Home Win Edge'] > raw_display['Road Win Edge'], raw_display['Home Win Edge'], raw_display['Road Win Edge'])
game_model = raw_display[['date', 'gameid', 'HomeTeam', 'HomeDiv', 'HomeConf', 'AwayTeam', 'AwayDiv', 'AwayConf',
'total', 'mlHome', 'mlAway', 'spreadHome', 'spreadAway', 'booksid', 'inconf', 'Neutral', 'Home Team PM',
'Road Team PM', 'HCA', 'Home Team Margin', 'Home Team Win', 'Home ML Break Even %',
'Road ML Break Even %', 'Home Win Edge', 'Road Win Edge', 'Moneyline Bet Rec', 'Edge for Moneyline', 'Home Spread Edge',
'Road Team Edge', 'Home Spread HKelly', 'Away Spread HKelly', 'Spread Bet Rec', 'Edge for Spread']]
data_cols = ['gameid', 'total', 'mlHome', 'mlAway', 'spreadHome', 'spreadAway', 'Neutral', 'Home Team PM',
'Road Team PM', 'HCA', 'Home Team Margin', 'Home Team Win', 'Home ML Break Even %',
'Road ML Break Even %', 'Home Win Edge', 'Road Win Edge', 'Edge for Moneyline', 'Home Spread Edge',
'Road Team Edge', 'Home Spread HKelly', 'Away Spread HKelly', 'Edge for Spread']
game_model[data_cols] = game_model[data_cols].apply(pd.to_numeric, errors='coerce')
game_model = game_model[game_model['date'] != ""]
just_win_probs = game_model[['date', 'HomeTeam', 'AwayTeam', 'booksid', 'total', 'mlHome', 'mlAway', 'spreadHome', 'spreadAway',
'Moneyline Bet Rec', 'Edge for Moneyline', 'Spread Bet Rec', 'Edge for Spread']]
timestamp = raw_display['Time'].head(1)[0]
return game_model, just_win_probs, timestamp
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
game_model, just_win_probs, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" EST"
st.info(t_stamp)
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset1'):
st.cache_data.clear()
game_model, just_win_probs, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" EST"
view_var1 = st.radio("Would you like to view math and stuff or just the win percentages and margins?", ('Just win probs', 'Gimme details'), key='view_var1')
view_var2 = st.radio("Would you like to view all books or specific ones?", ('All Books', 'Specific Books'), key='view_var2')
if view_var2 == 'All Books':
site_view = game_model.booksid.unique()
elif view_var2 == 'Specific Books':
site_view = st.multiselect("What books would you like included?", options = game_model.booksid.unique(), key='site_view')
with col2:
if view_var1 == 'Just win probs':
game_display = just_win_probs[just_win_probs['booksid'].isin(site_view)]
st.dataframe(game_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Game Model",
data=convert_df_to_csv(game_model),
file_name='AmericanNumbers_Game_Model_export.csv',
mime='text/csv',
)
elif view_var1 == 'Gimme details':
game_display = game_model[game_model['booksid'].isin(site_view)]
st.dataframe(game_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Game Model",
data=convert_df_to_csv(game_model),
file_name='AmericanNumbers_NCAA_BBall_export.csv',
mime='text/csv',
)