|
import streamlit as st |
|
st.set_page_config(layout="wide") |
|
|
|
for name in dir(): |
|
if not name.startswith('_'): |
|
del globals()[name] |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import streamlit as st |
|
import gspread |
|
import plotly.express as px |
|
import random |
|
import gc |
|
|
|
@st.cache_resource |
|
def init_conn(): |
|
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive'] |
|
|
|
credentials = { |
|
"type": "service_account", |
|
"project_id": "dfsnew", |
|
"private_key_id": "2432f6c3771f70a410c5c878d1359869fc9dddc8", |
|
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQDBNBDU2aJuEr6n\ne0o7pDY8gjg1+g1e3oHlpyY/CHMByZuEwfXewsZYP/TApfr8zxXDNG9X31CloWXH\n6ef8H0h6TjhRppE/2YCUZlbgtvpwlDg+1aKTKY5Lc/L937I6V512mgMDhDmTwX+p\noV0vhPuJnyFy+Fuo+xu8D9A46lhTTIK4EZhHc04SUBxUI3pDdfvuMbjciD/Pskn2\nMwBSEG/FQoe4GYrSmm7jzYdSHItVBakr26xl117m8BrIuceU7IEWrnJGDza8TtTZ\n+4Wp7PY9v6DgVt2+rnnDaF/g7kocLqoj2xWp1eS7OALwmqaIPFljIUkL5AJJiLC1\n+/ve6iwVAgMBAAECggEADTFsPdCvwBL9HGw1nT2BK6AbzQnKfHI2zhMcMD04N0TI\nXygsjT3hM/kIElizOyy7+HS97rLz65+KFvzwx71uIlXxkBfO/txwJJIZeCZeky33\n6kiF3cU+b4YXL4FlRwkhGk55irWuhdm2iUOY3KwYziTE8LgncDJXij/NMPnFtshZ\n/2Dc/7sKLi1tna5tfXr5v4N7LhyFOfHme8ZSZIhnpV+WnFM/VAVghwi+3vfzeV+a\nVgvv+QwRUBF+MYpoW8aDw3Y1jKuKKxcG0qHR1mQQTDK6eAymy28lJ9LfgKkZBLS3\nVEGH8O+gLQj2l8VR8koRxA1FETJ9BnIiV4OF+uLQQQKBgQDyYkeBnpPKnw3MXKgy\nxtpt7hLdrrQiR69PHEvHj9z6b60KTH9jDMKcbCU/ouwbTtLQnvtwta2RoWD/1xk+\n3uaeQv/jOtgKGE+Sa0FvJuDWZwBfUORnyqb+s5G9MpVlqNLLkUmE5myyrDbFdxei\nwzisIjvQxtJDLB3pucTRyd6a1QKBgQDMDoWUfNpQI/up3r0RWVCl3odpwOMnpN0S\nhf8uLyvEvtbcMnpxCQCl+4KWnOiX4GH4N9sZGF8YTPazO2Kd85/GioUoNo5u6vJo\ncxD0BTvg5meyUjfZsmuU620/eVQBa88TRdo3isLmBqUp7SAC+g4vTHpgxn00dRYv\neSfZN0dsQQKBgQDkxR34mVOkyrqbSFj4k/dWCn6D/YDHWiF86ZgcowxO01jff5Q8\nSK7mNKxzg7KVk7Amd+eaWd+YtFh5IOwTCw9gEJy0O7Xs0UVJTTJVVryfoFgZnp/1\n1rAHdjT3/eZELTPILzjU1yeA/Eo11lHYramvzh/mzcFm5RzWnR/HYmFYgQKBgFOy\nbSX/pAgVCkedvc0c5lBymvZMkJ+VJrxPS+Ckpn43jKea6M/uUl7Cb8jZKSoKdgS6\n3FpJvc+Y2eOgKw4AfHuSG5Xn8roaEj23XK/KacoQl130DUZ0wV2+xvuvBz7h+ni8\nQQphFxoEhcBRq7ys1h6ebt+86mQW1ne4aRjWbKxBAoGARA+rBNIC9Z1vyRzMAXfj\nnQ9/wShd/NGpVRNrm7sdUastfoyK8Ip3HkJac3xE1ARpQTvxAz742mdeDxPWI8wZ\nHDsjIrRqGLKMN7tSIoM720y6PY/Tsg89SdY4y0h6M75rrEi4Lv5b7s4EmqAZdfKT\nbEyuT7sCPCLeOX/RLy/lCpA=\n-----END PRIVATE KEY-----\n", |
|
"client_email": "[email protected]", |
|
"client_id": "105107448378741046480", |
|
"auth_uri": "https://accounts.google.com/o/oauth2/auth", |
|
"token_uri": "https://oauth2.googleapis.com/token", |
|
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", |
|
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/dfsapps%40dfsnew.iam.gserviceaccount.com", |
|
"universe_domain": "googleapis.com" |
|
} |
|
|
|
header= {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) ' |
|
'AppleWebKit/537.11 (KHTML, like Gecko) ' |
|
'Chrome/23.0.1271.64 Safari/537.11', |
|
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', |
|
'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3', |
|
'Accept-Encoding': 'none', |
|
'Accept-Language': 'en-US,en;q=0.8', |
|
'Connection': 'keep-alive'} |
|
|
|
gc_con = gspread.service_account_from_dict(credentials, scope) |
|
|
|
return gc_con |
|
|
|
gcservice_account = init_conn() |
|
|
|
NBAGetGameData = 'https://docs.google.com/spreadsheets/d/1tRQrF_I5rS7Q0g9vE8NrENDZ2P3_DvtbBZzKEakwOI0/edit#gid=1373653837' |
|
NCAAMensBasketball = 'https://docs.google.com/spreadsheets/d/1flWwlx1T7Xu68AjOkeq7u4Y7nWzukZzKTEI17RJ6MfE/edit#gid=1975368022' |
|
NBABettingModel = 'https://docs.google.com/spreadsheets/d/1WBnvOHQi_zVTGF63efejK5ho02AY00HiYrMHnMJXY1E/edit#gid=1157978351' |
|
|
|
game_format = {'Injury and Rotation Adjusted Win %': '{:.2%}'} |
|
|
|
percentages_format = {'Playoff Odds': '{:.2%}', 'Division Odds': '{:.2%}', 'Top 4 Seed Odds': '{:.2%}', '1 Seed Odds': '{:.2%}', 'Win 1st Round': '{:.2%}', |
|
'Win 2nd Round': '{:.2%}', 'Win Conference': '{:.2%}', 'Win Title': '{:.2%}', '1': '{:.2%}', '2': '{:.2%}', '3': '{:.2%}', |
|
'4': '{:.2%}', '5': '{:.2%}', '6': '{:.2%}', '7': '{:.2%}', '8': '{:.2%}', '9': '{:.2%}', '10': '{:.2%}', '11': '{:.2%}', |
|
'12': '{:.2%}', '13': '{:.2%}', '14': '{:.2%}', '15': '{:.2%}'} |
|
|
|
@st.cache_resource(ttl = 300) |
|
def init_baselines(): |
|
sh = gcservice_account.open_by_url(NCAAMensBasketball) |
|
|
|
worksheet = sh.worksheet('ActiveBets') |
|
raw_display = pd.DataFrame(worksheet.get_values()) |
|
raw_display.columns = raw_display.iloc[0] |
|
raw_display = raw_display[1:] |
|
raw_display = raw_display.reset_index(drop=True) |
|
raw_display.replace('', np.nan, inplace=True) |
|
raw_display['Edge for Moneyline'] = np.where(raw_display['Home Win Edge'] > raw_display['Road Win Edge'], raw_display['Home Win Edge'], raw_display['Road Win Edge']) |
|
game_model = raw_display[['date', 'gameid', 'HomeTeam', 'HomeDiv', 'HomeConf', 'AwayTeam', 'AwayDiv', 'AwayConf', |
|
'total', 'mlHome', 'mlAway', 'spreadHome', 'spreadAway', 'booksid', 'inconf', 'Neutral', 'Home Team PM', |
|
'Road Team PM', 'HCA', 'Home Team Margin', 'Home Team Win', 'Home ML Break Even %', |
|
'Road ML Break Even %', 'Home Win Edge', 'Road Win Edge', 'Moneyline Bet Rec', 'Edge for Moneyline', 'Home Spread Edge', |
|
'Road Team Edge', 'Home Spread HKelly', 'Away Spread HKelly', 'Spread Bet Rec', 'Edge for Spread']] |
|
data_cols = ['gameid', 'total', 'mlHome', 'mlAway', 'spreadHome', 'spreadAway', 'Neutral', 'Home Team PM', |
|
'Road Team PM', 'HCA', 'Home Team Margin', 'Home Team Win', 'Home ML Break Even %', |
|
'Road ML Break Even %', 'Home Win Edge', 'Road Win Edge', 'Edge for Moneyline', 'Home Spread Edge', |
|
'Road Team Edge', 'Home Spread HKelly', 'Away Spread HKelly', 'Edge for Spread'] |
|
game_model[data_cols] = game_model[data_cols].apply(pd.to_numeric, errors='coerce') |
|
game_model = game_model[game_model['date'] != ""] |
|
just_win_probs = game_model[['date', 'HomeTeam', 'AwayTeam', 'booksid', 'total', 'mlHome', 'mlAway', 'spreadHome', 'spreadAway', |
|
'Moneyline Bet Rec', 'Edge for Moneyline', 'Spread Bet Rec', 'Edge for Spread']] |
|
|
|
timestamp = raw_display['Time'].head(1)[0] |
|
|
|
return game_model, just_win_probs, timestamp |
|
|
|
def convert_df_to_csv(df): |
|
return df.to_csv().encode('utf-8') |
|
|
|
game_model, just_win_probs, timestamp = init_baselines() |
|
t_stamp = f"Last Update: " + str(timestamp) + f" EST" |
|
|
|
|
|
st.info(t_stamp) |
|
col1, col2 = st.columns([1, 9]) |
|
with col1: |
|
if st.button("Reset Data", key='reset1'): |
|
st.cache_data.clear() |
|
game_model, just_win_probs, timestamp = init_baselines() |
|
t_stamp = f"Last Update: " + str(timestamp) + f" EST" |
|
view_var1 = st.radio("Would you like to view math and stuff or just the win percentages and margins?", ('Just win probs', 'Gimme details'), key='view_var1') |
|
view_var2 = st.radio("Would you like to view all books or specific ones?", ('All Books', 'Specific Books'), key='view_var2') |
|
if view_var2 == 'All Books': |
|
site_view = game_model.booksid.unique() |
|
elif view_var2 == 'Specific Books': |
|
site_view = st.multiselect("What books would you like included?", options = game_model.booksid.unique(), key='site_view') |
|
|
|
with col2: |
|
if view_var1 == 'Just win probs': |
|
game_display = just_win_probs[just_win_probs['booksid'].isin(site_view)] |
|
st.dataframe(game_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) |
|
st.download_button( |
|
label="Export Game Model", |
|
data=convert_df_to_csv(game_model), |
|
file_name='AmericanNumbers_Game_Model_export.csv', |
|
mime='text/csv', |
|
) |
|
elif view_var1 == 'Gimme details': |
|
game_display = game_model[game_model['booksid'].isin(site_view)] |
|
st.dataframe(game_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) |
|
st.download_button( |
|
label="Export Game Model", |
|
data=convert_df_to_csv(game_model), |
|
file_name='AmericanNumbers_NCAA_BBall_export.csv', |
|
mime='text/csv', |
|
) |