Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pulp
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import streamlit as st
|
5 |
+
import gspread
|
6 |
+
|
7 |
+
scope = ['https://www.googleapis.com/auth/spreadsheets',
|
8 |
+
"https://www.googleapis.com/auth/drive"]
|
9 |
+
|
10 |
+
credentials = {
|
11 |
+
"type": "service_account",
|
12 |
+
"project_id": "sheets-api-connect-378620",
|
13 |
+
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
|
14 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
15 |
+
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
16 |
+
"client_id": "106625872877651920064",
|
17 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
18 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
19 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
20 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
21 |
+
}
|
22 |
+
|
23 |
+
gspreadcon = gspread.service_account_from_dict(credentials)
|
24 |
+
|
25 |
+
st.set_page_config(layout="wide")
|
26 |
+
|
27 |
+
roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}',
|
28 |
+
'120+%': '{:.2%}','10x%': '{:.2%}','11x%': '{:.2%}','12x%': '{:.2%}','Own': '{:.2%}','LevX': '{:.2%}'}
|
29 |
+
|
30 |
+
odds_format = {'Odds': '{:.2%}'}
|
31 |
+
|
32 |
+
stat_format = {'Odds%': '{:.2%}'}
|
33 |
+
|
34 |
+
master_hold = 'https://docs.google.com/spreadsheets/d/1dOXsbeWbvWjRyohsEEDXOiWji4-1R1J6E-Lu2CSM9AM/edit#gid=928272897'
|
35 |
+
|
36 |
+
@st.cache_resource(ttl=600)
|
37 |
+
def pull_baselines():
|
38 |
+
sh = gspreadcon.open_by_url(master_hold)
|
39 |
+
|
40 |
+
worksheet = sh.worksheet('Overall_Vegas')
|
41 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
42 |
+
raw_display = raw_display.loc[raw_display['Team'] != ""]
|
43 |
+
odds_table = raw_display[['Team', 'Vegas', 'Odds', 'Games']]
|
44 |
+
|
45 |
+
worksheet = sh.worksheet('Overall_ROO')
|
46 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
47 |
+
overall_roo = raw_display.loc[raw_display['Player'] != ""]
|
48 |
+
|
49 |
+
worksheet = sh.worksheet('Win_ROO')
|
50 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
51 |
+
win_roo = raw_display.loc[raw_display['Player'] != ""]
|
52 |
+
|
53 |
+
worksheet = sh.worksheet('Loss_ROO')
|
54 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
55 |
+
loss_roo = raw_display.loc[raw_display['Player'] != ""]
|
56 |
+
|
57 |
+
worksheet = sh.worksheet('3_map_Proj')
|
58 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
59 |
+
raw_display = raw_display.loc[raw_display['Player'] != ""]
|
60 |
+
map_proj_3 = raw_display[['Player', 'Team', 'Opponent', 'Odds', 'Win%', 'Avg Kills', 'Avg Deaths', 'Proj_Kills', 'Proj_Deaths']]
|
61 |
+
|
62 |
+
worksheet = sh.worksheet('Timestamp')
|
63 |
+
timestamp = worksheet.acell('A1').value
|
64 |
+
|
65 |
+
return odds_table, overall_roo, win_roo, timestamp, loss_roo, map_proj_3
|
66 |
+
|
67 |
+
def convert_df_to_csv(df):
|
68 |
+
return df.to_csv().encode('utf-8')
|
69 |
+
|
70 |
+
odds_table, overall_roo, win_roo, timestamp, loss_roo, map_proj_3 = pull_baselines()
|
71 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
72 |
+
|
73 |
+
tab1, tab2, tab3 = st.tabs(["COD Odds Tables", "COD Range of Outcomes", "COD 3-map projections"])
|
74 |
+
|
75 |
+
with tab1:
|
76 |
+
st.info(t_stamp)
|
77 |
+
if st.button("Reset Data", key='reset1'):
|
78 |
+
st.cache_data.clear()
|
79 |
+
odds_table, overall_roo, win_roo, timestamp, loss_roo, map_proj_3 = pull_baselines()
|
80 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
81 |
+
odds_display = odds_table
|
82 |
+
st.dataframe(odds_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(odds_format, precision=2), use_container_width = True)
|
83 |
+
st.download_button(
|
84 |
+
label="Export Tables",
|
85 |
+
data=convert_df_to_csv(odds_display),
|
86 |
+
file_name='COD_Odds_Tables_export.csv',
|
87 |
+
mime='text/csv',
|
88 |
+
)
|
89 |
+
|
90 |
+
with tab2:
|
91 |
+
st.info(t_stamp)
|
92 |
+
if st.button("Reset Data", key='reset2'):
|
93 |
+
st.cache_data.clear()
|
94 |
+
odds_table, overall_roo, win_roo, timestamp, loss_roo, map_proj_3 = pull_baselines()
|
95 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
96 |
+
model_choice = st.radio("What table would you like to display?", ('Overall', 'Wins', 'Losses'), key='roo_table')
|
97 |
+
team_var1 = st.multiselect('View specific team?', options = overall_roo['Team'].unique(), key = 'roo_teamvar')
|
98 |
+
if model_choice == 'Overall':
|
99 |
+
hold_display = overall_roo
|
100 |
+
elif model_choice == 'Wins':
|
101 |
+
hold_display = win_roo
|
102 |
+
elif model_choice == 'Losses':
|
103 |
+
hold_display = loss_roo
|
104 |
+
hold_display['Own'] = hold_display['Own'] / 100
|
105 |
+
display = hold_display.set_index('Player')
|
106 |
+
export_display = display
|
107 |
+
export_display['Own'] = export_display['Own'] *100
|
108 |
+
export_display['Position'] = "FLEX"
|
109 |
+
if team_var1:
|
110 |
+
display = display[display['Team'].isin(team_var1)]
|
111 |
+
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), use_container_width = True)
|
112 |
+
st.download_button(
|
113 |
+
label="Export Range of Outcomes",
|
114 |
+
data=convert_df_to_csv(export_display),
|
115 |
+
file_name='CSGO_ROO_export.csv',
|
116 |
+
mime='text/csv',
|
117 |
+
)
|
118 |
+
|
119 |
+
with tab3:
|
120 |
+
st.info(t_stamp)
|
121 |
+
if st.button("Reset Data", key='reset3'):
|
122 |
+
st.cache_data.clear()
|
123 |
+
odds_table, overall_roo, win_roo, timestamp, loss_roo, map_proj_3 = pull_baselines()
|
124 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
125 |
+
team_var2 = st.multiselect('View specific team?', options = map_proj_3['Team'].unique(), key = 'stat_teamvar')
|
126 |
+
map_stat_display = map_proj_3
|
127 |
+
if team_var2:
|
128 |
+
display = display[display['Team'].isin(team_var2)]
|
129 |
+
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(stat_format, precision=2), use_container_width = True)
|
130 |
+
st.download_button(
|
131 |
+
label="Export Projections",
|
132 |
+
data=convert_df_to_csv(map_stat_display),
|
133 |
+
file_name='COD_Projections_export.csv',
|
134 |
+
mime='text/csv',
|
135 |
+
)
|