File size: 10,834 Bytes
de86cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06ef939
f97431a
f40b61d
de86cd9
06ef939
 
 
 
 
 
de86cd9
06ef939
 
 
 
 
 
 
 
 
de86cd9
 
 
 
 
 
3c69d02
de86cd9
 
5f2f346
d515291
de86cd9
 
 
 
 
 
 
 
 
3c69d02
de86cd9
 
5f2f346
d515291
de86cd9
 
 
 
 
 
 
 
 
3c69d02
de86cd9
 
5f2f346
d515291
de86cd9
 
 
 
 
 
 
 
 
f40b61d
de86cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa2a637
de86cd9
 
fa2a637
de86cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import pulp
import numpy as np
import pandas as pd
import random
import sys
import openpyxl
import re
import time
import streamlit as st
import matplotlib
from  matplotlib.colors import LinearSegmentedColormap
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
import json
import requests
import gspread
import plotly.figure_factory as ff

scope = ['https://www.googleapis.com/auth/spreadsheets',
          "https://www.googleapis.com/auth/drive"]

credentials = {
  "type": "service_account",
  "project_id": "sheets-api-connect-378620",
  "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
  "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
  "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
  "client_id": "106625872877651920064",
  "auth_uri": "https://accounts.google.com/o/oauth2/auth",
  "token_uri": "https://oauth2.googleapis.com/token",
  "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
  "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}

gc = gspread.service_account_from_dict(credentials)

st.set_page_config(layout="wide")

roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}',
              '40+%': '{:.2%}','3x%': '{:.2%}','4x%': '{:.2%}','5x%': '{:.2%}','Own': '{:.2%}','LevX': '{:.2%}'}
stat_format = {'Odds%': '{:.2%}', 'Boosts': '{:.2%}'}

overall_table = 'LOL_Overall_Proj'
wins_table = 'LOL_Win_Proj'
losses_table = 'LOL_Loss_Proj'
stacks_table = 'https://docs.google.com/spreadsheets/d/10MVGsAHJPUAdK9SJ28ZqjgBgV2xBJSXEka-s2pIxHHE/edit?pli=1#gid=0'
bo1_player_stats = 'https://docs.google.com/spreadsheets/d/10MVGsAHJPUAdK9SJ28ZqjgBgV2xBJSXEka-s2pIxHHE/edit?pli=1#gid=0'
bo3_player_stats = 'https://docs.google.com/spreadsheets/d/10MVGsAHJPUAdK9SJ28ZqjgBgV2xBJSXEka-s2pIxHHE/edit?pli=1#gid=0'
bo5_player_stats = 'https://docs.google.com/spreadsheets/d/10MVGsAHJPUAdK9SJ28ZqjgBgV2xBJSXEka-s2pIxHHE/edit?pli=1#gid=0'

@st.cache_data
def load_roo_model(outcome):
    sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/10MVGsAHJPUAdK9SJ28ZqjgBgV2xBJSXEka-s2pIxHHE/edit?pli=1#gid=0')
    worksheet = sh.worksheet('ROO')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    if outcome == 'Overall':
        raw_display = raw_display.loc[raw_display['type'] == 'Overall']
    elif outcome == 'Wins':
        raw_display = raw_display.loc[raw_display['type'] == 'Wins']
    elif outcome == 'Losses':
        raw_display = raw_display.loc[raw_display['type'] == 'Losses']
    raw_display["Salary"] = raw_display["Salary"].replace("$", "", regex=True).astype(float)
    raw_display['Top_finish'] = raw_display['Top_finish'].astype(float)/100
    raw_display['Top_5_finish'] = raw_display['Top_5_finish'].astype(float)/100
    raw_display['Top_10_finish'] = raw_display['Top_10_finish'].astype(float)/100
    raw_display['40+%'] = raw_display['40+%'].astype(float)/100
    raw_display['3x%'] = raw_display['3x%'].astype(float)/100
    raw_display['4x%'] = raw_display['4x%'].astype(float)/100
    raw_display['5x%'] = raw_display['5x%'].astype(float)/100
    raw_display['Own'] = raw_display['Own'].astype(float)/100
    raw_display['LevX'] = raw_display['LevX'].astype(float)/100

    return raw_display

@st.cache_data
def load_bo1_proj_model(URL):
    sh = gc.open_by_url(URL)
    worksheet = sh.worksheet('Overall_BO1_Stats')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player"}, inplace = True)
    raw_display['Odds%'] = raw_display['Odds%'].astype(float)/100
    raw_display['Boosts'] = raw_display['Kill Boost'].astype(float)/100
    raw_display = raw_display.loc[raw_display['Kills'] != '#DIV/0!']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    raw_display = raw_display.sort_values(by='Kills', ascending=False)

    return raw_display

@st.cache_data
def load_bo3_proj_model(URL):
    sh = gc.open_by_url(URL)
    worksheet = sh.worksheet('Overall_BO3_Stats')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player"}, inplace = True)
    raw_display['Odds%'] = raw_display['Odds%'].astype(float)/100
    raw_display['Boosts'] = raw_display['Kill Boost'].astype(float)/100
    raw_display = raw_display.loc[raw_display['Kills'] != '#DIV/0!']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    raw_display = raw_display.sort_values(by='Kills', ascending=False)

    return raw_display

@st.cache_data
def load_bo5_proj_model(URL):
    sh = gc.open_by_url(URL)
    worksheet = sh.worksheet('Overall_BO5_Stats')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player"}, inplace = True)
    raw_display['Odds%'] = raw_display['Odds%'].astype(float)/100
    raw_display['Boosts'] = raw_display['Kill Boost'].astype(float)/100
    raw_display = raw_display.loc[raw_display['Kills'] != '#DIV/0!']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    raw_display = raw_display.sort_values(by='Kills', ascending=False)
          
    return raw_display  

@st.cache_data
def load_stacks_table(URL):
    sh = gc.open_by_url(URL)
    worksheet = sh.worksheet('Overall_Stacks')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display = raw_display.sort_values(by='Stack+', ascending=False)

    return raw_display    
  
tab1, tab2, tab3 = st.tabs(["LOL Stacks Table", "LOL Range of Outcomes", "LOL Player Base Stats"])

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

with tab1:
    if st.button("Reset Data", key='reset1'):
              # Clear values from *all* all in-memory and on-disk data caches:
              # i.e. clear values from both square and cube
              st.cache_data.clear()
    hold_display = load_stacks_table(stacks_table)
    display = hold_display.set_index('Team')
    st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
    st.download_button(
        label="Export Stacks",
        data=convert_df_to_csv(display),
        file_name='LOL_Stacks_export.csv',
        mime='text/csv',
    )
  
with tab2:
    if st.button("Reset Data", key='reset2'):
              # Clear values from *all* all in-memory and on-disk data caches:
              # i.e. clear values from both square and cube
              st.cache_data.clear()
    model_choice = st.radio("What table would you like to display?", ('Overall', 'Wins', 'Losses'), key='roo_table')
    pos_var1 = st.selectbox('View specific position?', options = ['All', 'TOP', 'JNG', 'MID', 'ADC', 'SUP'], key = 'roo_posvar')
    team_var1 = st.multiselect('View specific team?', options = hold_display['Team'].unique(), key = 'roo_teamvar')
    hold_display = load_roo_model(model_choice)
    display = hold_display.set_index('Player')
    if team_var1:
          display = display[display['Team'].isin(team_var1)]
    if pos_var1 == 'All':
          display = display
    elif pos_var1 != 'All':
          display = display[display['Position'].str.contains(pos_var1)]
    st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), use_container_width = True)
    st.download_button(
        label="Export Range of Outcomes",
        data=convert_df_to_csv(display),
        file_name='LOL_ROO_export.csv',
        mime='text/csv',
    )

with tab3:
    if st.button("Reset Data", key='reset3'):
              # Clear values from *all* all in-memory and on-disk data caches:
              # i.e. clear values from both square and cube
              st.cache_data.clear()
    gametype_choice = st.radio("What format are the games being played?", ('Best of 1', 'Best of 3', 'Best of 5'), key='player_stats')
    pos_var2 = st.selectbox('View specific position?', options = ['All', 'TOP', 'JNG', 'MID', 'ADC', 'SUP'], key = 'proj_posvar')
    team_var2 = st.multiselect('View specific team?', options = hold_display['Team'].unique(), key = 'proj_teamvar')
    if gametype_choice == 'Best of 1':
      hold_display = load_bo1_proj_model(bo1_player_stats)
    elif gametype_choice == 'Best of 3':
      hold_display = load_bo3_proj_model(bo3_player_stats)
    elif gametype_choice == 'Best of 5':
      hold_display = load_bo5_proj_model(bo5_player_stats)
    display = hold_display.set_index('Player')
    if team_var2:
          display = display[display['Team'].isin(team_var2)]
    if pos_var2 == 'All':
          display = display
    elif pos_var2 != 'All':
          display = display[display['Position'].str.contains(pos_var2)]
    st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(stat_format, precision=2), use_container_width = True)
    st.download_button(
        label="Export Baselines",
        data=convert_df_to_csv(display),
        file_name='LOL_Baselines_export.csv',
        mime='text/csv',
    )