Spaces:
Running
Running
File size: 10,834 Bytes
de86cd9 06ef939 f97431a f40b61d de86cd9 06ef939 de86cd9 06ef939 de86cd9 3c69d02 de86cd9 5f2f346 d515291 de86cd9 3c69d02 de86cd9 5f2f346 d515291 de86cd9 3c69d02 de86cd9 5f2f346 d515291 de86cd9 f40b61d de86cd9 fa2a637 de86cd9 fa2a637 de86cd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import pulp
import numpy as np
import pandas as pd
import random
import sys
import openpyxl
import re
import time
import streamlit as st
import matplotlib
from matplotlib.colors import LinearSegmentedColormap
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
import json
import requests
import gspread
import plotly.figure_factory as ff
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc = gspread.service_account_from_dict(credentials)
st.set_page_config(layout="wide")
roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}',
'40+%': '{:.2%}','3x%': '{:.2%}','4x%': '{:.2%}','5x%': '{:.2%}','Own': '{:.2%}','LevX': '{:.2%}'}
stat_format = {'Odds%': '{:.2%}', 'Boosts': '{:.2%}'}
overall_table = 'LOL_Overall_Proj'
wins_table = 'LOL_Win_Proj'
losses_table = 'LOL_Loss_Proj'
stacks_table = 'https://docs.google.com/spreadsheets/d/10MVGsAHJPUAdK9SJ28ZqjgBgV2xBJSXEka-s2pIxHHE/edit?pli=1#gid=0'
bo1_player_stats = 'https://docs.google.com/spreadsheets/d/10MVGsAHJPUAdK9SJ28ZqjgBgV2xBJSXEka-s2pIxHHE/edit?pli=1#gid=0'
bo3_player_stats = 'https://docs.google.com/spreadsheets/d/10MVGsAHJPUAdK9SJ28ZqjgBgV2xBJSXEka-s2pIxHHE/edit?pli=1#gid=0'
bo5_player_stats = 'https://docs.google.com/spreadsheets/d/10MVGsAHJPUAdK9SJ28ZqjgBgV2xBJSXEka-s2pIxHHE/edit?pli=1#gid=0'
@st.cache_data
def load_roo_model(outcome):
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/10MVGsAHJPUAdK9SJ28ZqjgBgV2xBJSXEka-s2pIxHHE/edit?pli=1#gid=0')
worksheet = sh.worksheet('ROO')
raw_display = pd.DataFrame(worksheet.get_all_records())
if outcome == 'Overall':
raw_display = raw_display.loc[raw_display['type'] == 'Overall']
elif outcome == 'Wins':
raw_display = raw_display.loc[raw_display['type'] == 'Wins']
elif outcome == 'Losses':
raw_display = raw_display.loc[raw_display['type'] == 'Losses']
raw_display["Salary"] = raw_display["Salary"].replace("$", "", regex=True).astype(float)
raw_display['Top_finish'] = raw_display['Top_finish'].astype(float)/100
raw_display['Top_5_finish'] = raw_display['Top_5_finish'].astype(float)/100
raw_display['Top_10_finish'] = raw_display['Top_10_finish'].astype(float)/100
raw_display['40+%'] = raw_display['40+%'].astype(float)/100
raw_display['3x%'] = raw_display['3x%'].astype(float)/100
raw_display['4x%'] = raw_display['4x%'].astype(float)/100
raw_display['5x%'] = raw_display['5x%'].astype(float)/100
raw_display['Own'] = raw_display['Own'].astype(float)/100
raw_display['LevX'] = raw_display['LevX'].astype(float)/100
return raw_display
@st.cache_data
def load_bo1_proj_model(URL):
sh = gc.open_by_url(URL)
worksheet = sh.worksheet('Overall_BO1_Stats')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.rename(columns={"Name": "Player"}, inplace = True)
raw_display['Odds%'] = raw_display['Odds%'].astype(float)/100
raw_display['Boosts'] = raw_display['Kill Boost'].astype(float)/100
raw_display = raw_display.loc[raw_display['Kills'] != '#DIV/0!']
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
raw_display = raw_display.sort_values(by='Kills', ascending=False)
return raw_display
@st.cache_data
def load_bo3_proj_model(URL):
sh = gc.open_by_url(URL)
worksheet = sh.worksheet('Overall_BO3_Stats')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.rename(columns={"Name": "Player"}, inplace = True)
raw_display['Odds%'] = raw_display['Odds%'].astype(float)/100
raw_display['Boosts'] = raw_display['Kill Boost'].astype(float)/100
raw_display = raw_display.loc[raw_display['Kills'] != '#DIV/0!']
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
raw_display = raw_display.sort_values(by='Kills', ascending=False)
return raw_display
@st.cache_data
def load_bo5_proj_model(URL):
sh = gc.open_by_url(URL)
worksheet = sh.worksheet('Overall_BO5_Stats')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.rename(columns={"Name": "Player"}, inplace = True)
raw_display['Odds%'] = raw_display['Odds%'].astype(float)/100
raw_display['Boosts'] = raw_display['Kill Boost'].astype(float)/100
raw_display = raw_display.loc[raw_display['Kills'] != '#DIV/0!']
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
raw_display = raw_display.sort_values(by='Kills', ascending=False)
return raw_display
@st.cache_data
def load_stacks_table(URL):
sh = gc.open_by_url(URL)
worksheet = sh.worksheet('Overall_Stacks')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display = raw_display.sort_values(by='Stack+', ascending=False)
return raw_display
tab1, tab2, tab3 = st.tabs(["LOL Stacks Table", "LOL Range of Outcomes", "LOL Player Base Stats"])
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
with tab1:
if st.button("Reset Data", key='reset1'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
hold_display = load_stacks_table(stacks_table)
display = hold_display.set_index('Team')
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Stacks",
data=convert_df_to_csv(display),
file_name='LOL_Stacks_export.csv',
mime='text/csv',
)
with tab2:
if st.button("Reset Data", key='reset2'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
model_choice = st.radio("What table would you like to display?", ('Overall', 'Wins', 'Losses'), key='roo_table')
pos_var1 = st.selectbox('View specific position?', options = ['All', 'TOP', 'JNG', 'MID', 'ADC', 'SUP'], key = 'roo_posvar')
team_var1 = st.multiselect('View specific team?', options = hold_display['Team'].unique(), key = 'roo_teamvar')
hold_display = load_roo_model(model_choice)
display = hold_display.set_index('Player')
if team_var1:
display = display[display['Team'].isin(team_var1)]
if pos_var1 == 'All':
display = display
elif pos_var1 != 'All':
display = display[display['Position'].str.contains(pos_var1)]
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Range of Outcomes",
data=convert_df_to_csv(display),
file_name='LOL_ROO_export.csv',
mime='text/csv',
)
with tab3:
if st.button("Reset Data", key='reset3'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
gametype_choice = st.radio("What format are the games being played?", ('Best of 1', 'Best of 3', 'Best of 5'), key='player_stats')
pos_var2 = st.selectbox('View specific position?', options = ['All', 'TOP', 'JNG', 'MID', 'ADC', 'SUP'], key = 'proj_posvar')
team_var2 = st.multiselect('View specific team?', options = hold_display['Team'].unique(), key = 'proj_teamvar')
if gametype_choice == 'Best of 1':
hold_display = load_bo1_proj_model(bo1_player_stats)
elif gametype_choice == 'Best of 3':
hold_display = load_bo3_proj_model(bo3_player_stats)
elif gametype_choice == 'Best of 5':
hold_display = load_bo5_proj_model(bo5_player_stats)
display = hold_display.set_index('Player')
if team_var2:
display = display[display['Team'].isin(team_var2)]
if pos_var2 == 'All':
display = display
elif pos_var2 != 'All':
display = display[display['Position'].str.contains(pos_var2)]
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(stat_format, precision=2), use_container_width = True)
st.download_button(
label="Export Baselines",
data=convert_df_to_csv(display),
file_name='LOL_Baselines_export.csv',
mime='text/csv',
) |