Multichem commited on
Commit
0ee5ebe
·
verified ·
1 Parent(s): 55e4f2c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +616 -0
app.py ADDED
@@ -0,0 +1,616 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ st.set_page_config(layout="wide")
3
+ import numpy as np
4
+ import pandas as pd
5
+ import gspread
6
+ import pymongo
7
+ import time
8
+
9
+ @st.cache_resource
10
+ def init_conn():
11
+ scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
12
+
13
+ credentials = {
14
+ "type": "service_account",
15
+ "project_id": "model-sheets-connect",
16
+ "private_key_id": st.secrets['model_sheets_connect_pk'],
17
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
18
+ "client_email": "[email protected]",
19
+ "client_id": "100369174533302798535",
20
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
21
+ "token_uri": "https://oauth2.googleapis.com/token",
22
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
23
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
24
+ }
25
+
26
+ credentials2 = {
27
+ "type": "service_account",
28
+ "project_id": "sheets-api-connect-378620",
29
+ "private_key_id": st.secrets['sheets_api_connect_pk'],
30
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
31
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
32
+ "client_id": "106625872877651920064",
33
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
34
+ "token_uri": "https://oauth2.googleapis.com/token",
35
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
36
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
37
+ }
38
+
39
+ uri = st.secrets['mongo_uri']
40
+ client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
41
+ db = client["testing_db"]
42
+
43
+ NFL_Data = st.secrets['NFL_Data']
44
+
45
+ gc = gspread.service_account_from_dict(credentials)
46
+ gc2 = gspread.service_account_from_dict(credentials2)
47
+
48
+ return gc, gc2, db, NFL_Data
49
+
50
+ gcservice_account, gcservice_account2, db, NFL_Data = init_conn()
51
+
52
+ percentages_format = {'Exposure': '{:.2%}'}
53
+ freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
54
+ dk_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
55
+ fd_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
56
+
57
+ @st.cache_data(ttl = 599)
58
+ def init_DK_seed_frames():
59
+
60
+ collection = db["DK_NFL_seed_frame"]
61
+ cursor = collection.find()
62
+
63
+ raw_display = pd.DataFrame(list(cursor))
64
+ raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
65
+ DK_seed = raw_display.to_numpy()
66
+
67
+ return DK_seed
68
+
69
+ @st.cache_data(ttl = 599)
70
+ def init_FD_seed_frames():
71
+
72
+ collection = db["FD_NFL_seed_frame"]
73
+ cursor = collection.find()
74
+
75
+ raw_display = pd.DataFrame(list(cursor))
76
+ raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
77
+ FD_seed = raw_display.to_numpy()
78
+
79
+ return FD_seed
80
+
81
+ @st.cache_data(ttl = 599)
82
+ def init_baselines():
83
+ try:
84
+ sh = gcservice_account.open_by_url(NFL_Data)
85
+ except:
86
+ sh = gcservice_account2.open_by_url(NFL_Data)
87
+
88
+ worksheet = sh.worksheet('DK_ROO')
89
+ load_display = pd.DataFrame(worksheet.get_all_records())
90
+ load_display.replace('', np.nan, inplace=True)
91
+ load_display['STDev'] = load_display['Median'] / 4
92
+ load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
93
+
94
+ dk_raw = load_display.dropna(subset=['Median'])
95
+
96
+ worksheet = sh.worksheet('FD_ROO')
97
+ load_display = pd.DataFrame(worksheet.get_all_records())
98
+ load_display.replace('', np.nan, inplace=True)
99
+ load_display['STDev'] = load_display['Median'] / 4
100
+ load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
101
+
102
+ fd_raw = load_display.dropna(subset=['Median'])
103
+
104
+ return dk_raw, fd_raw
105
+
106
+ @st.cache_data
107
+ def convert_df(array):
108
+ array = pd.DataFrame(array, columns=column_names)
109
+ return array.to_csv().encode('utf-8')
110
+
111
+ @st.cache_data
112
+ def calculate_DK_value_frequencies(np_array):
113
+ unique, counts = np.unique(np_array[:, :9], return_counts=True)
114
+ frequencies = counts / len(np_array) # Normalize by the number of rows
115
+ combined_array = np.column_stack((unique, frequencies))
116
+ return combined_array
117
+
118
+ @st.cache_data
119
+ def calculate_FD_value_frequencies(np_array):
120
+ unique, counts = np.unique(np_array[:, :9], return_counts=True)
121
+ frequencies = counts / len(np_array) # Normalize by the number of rows
122
+ combined_array = np.column_stack((unique, frequencies))
123
+ return combined_array
124
+
125
+ @st.cache_data
126
+ def sim_contest(Sim_size, seed_frame, maps_dict, sharp_split, Contest_Size):
127
+ SimVar = 1
128
+ Sim_Winners = []
129
+ fp_array = seed_frame[:sharp_split, :]
130
+
131
+ # Pre-vectorize functions
132
+ vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
133
+ vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
134
+
135
+ st.write('Simulating contest on frames')
136
+
137
+ while SimVar <= Sim_size:
138
+ fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
139
+
140
+ sample_arrays1 = np.c_[
141
+ fp_random,
142
+ np.sum(np.random.normal(
143
+ loc=vec_projection_map(fp_random[:, :-7]),
144
+ scale=vec_stdev_map(fp_random[:, :-7])),
145
+ axis=1)
146
+ ]
147
+
148
+ sample_arrays = sample_arrays1
149
+
150
+ final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
151
+ best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
152
+ Sim_Winners.append(best_lineup)
153
+ SimVar += 1
154
+
155
+ return Sim_Winners
156
+
157
+ DK_seed = init_DK_seed_frames()
158
+ FD_seed = init_FD_seed_frames()
159
+ dk_raw, fd_raw = init_baselines()
160
+
161
+ tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
162
+ with tab2:
163
+ col1, col2 = st.columns([1, 7])
164
+ with col1:
165
+ if st.button("Load/Reset Data", key='reset1'):
166
+ st.cache_data.clear()
167
+ for key in st.session_state.keys():
168
+ del st.session_state[key]
169
+ DK_seed = init_DK_seed_frames()
170
+ FD_seed = init_FD_seed_frames()
171
+ dk_raw, fd_raw = init_baselines()
172
+
173
+ slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
174
+ site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
175
+ if site_var1 == 'Draftkings':
176
+ raw_baselines = dk_raw
177
+ column_names = dk_columns
178
+
179
+ team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
180
+ if team_var1 == 'Specific Teams':
181
+ team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
182
+ elif team_var1 == 'Full Slate':
183
+ team_var2 = dk_raw.Team.values.tolist()
184
+
185
+ stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
186
+ if stack_var1 == 'Specific Stack Sizes':
187
+ stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
188
+ elif stack_var1 == 'Full Slate':
189
+ stack_var2 = [5, 4, 3, 2, 1, 0]
190
+
191
+ elif site_var1 == 'Fanduel':
192
+ raw_baselines = fd_raw
193
+ column_names = fd_columns
194
+
195
+ team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
196
+ if team_var1 == 'Specific Teams':
197
+ team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
198
+ elif team_var1 == 'Full Slate':
199
+ team_var2 = fd_raw.Team.values.tolist()
200
+
201
+ stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
202
+ if stack_var1 == 'Specific Stack Sizes':
203
+ stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
204
+ elif stack_var1 == 'Full Slate':
205
+ stack_var2 = [5, 4, 3, 2, 1, 0]
206
+
207
+
208
+ if st.button("Prepare data export", key='data_export'):
209
+ data_export = st.session_state.working_seed.copy()
210
+ st.download_button(
211
+ label="Export optimals set",
212
+ data=convert_df(data_export),
213
+ file_name='NFL_optimals_export.csv',
214
+ mime='text/csv',
215
+ )
216
+
217
+ with col2:
218
+ if st.button("Load Data", key='load_data'):
219
+ if site_var1 == 'Draftkings':
220
+ if 'working_seed' in st.session_state:
221
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
222
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
223
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
224
+ elif 'working_seed' not in st.session_state:
225
+ st.session_state.working_seed = DK_seed.copy()
226
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
227
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
228
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
229
+
230
+ elif site_var1 == 'Fanduel':
231
+ if 'working_seed' in st.session_state:
232
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
233
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
234
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
235
+ elif 'working_seed' not in st.session_state:
236
+ st.session_state.working_seed = FD_seed.copy()
237
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
238
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
239
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
240
+
241
+ with st.container():
242
+ if 'data_export_display' in st.session_state:
243
+ st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)
244
+
245
+ with tab1:
246
+ col1, col2 = st.columns([1, 7])
247
+ with col1:
248
+ if st.button("Load/Reset Data", key='reset2'):
249
+ st.cache_data.clear()
250
+ for key in st.session_state.keys():
251
+ del st.session_state[key]
252
+ DK_seed = init_DK_seed_frames()
253
+ FD_seed = init_FD_seed_frames()
254
+ dk_raw, fd_raw = init_baselines()
255
+ sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'), key='sim_slate_var1')
256
+ sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
257
+ if sim_site_var1 == 'Draftkings':
258
+ raw_baselines = dk_raw
259
+ column_names = dk_columns
260
+ elif sim_site_var1 == 'Fanduel':
261
+ raw_baselines = fd_raw
262
+ column_names = fd_columns
263
+
264
+ contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
265
+ if contest_var1 == 'Small':
266
+ Contest_Size = 1000
267
+ elif contest_var1 == 'Medium':
268
+ Contest_Size = 5000
269
+ elif contest_var1 == 'Large':
270
+ Contest_Size = 10000
271
+ elif contest_var1 == 'Custom':
272
+ Contest_Size = st.number_input("Insert contest size", value=100, placeholder="Type a number under 10,000...")
273
+ strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
274
+ if strength_var1 == 'Not Very':
275
+ sharp_split = 500000
276
+ elif strength_var1 == 'Below Average':
277
+ sharp_split = 400000
278
+ elif strength_var1 == 'Average':
279
+ sharp_split = 300000
280
+ elif strength_var1 == 'Above Average':
281
+ sharp_split = 200000
282
+ elif strength_var1 == 'Very':
283
+ sharp_split = 100000
284
+
285
+
286
+ with col2:
287
+ if st.button("Run Contest Sim"):
288
+ if 'working_seed' in st.session_state:
289
+ maps_dict = {
290
+ 'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
291
+ 'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
292
+ 'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
293
+ 'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
294
+ 'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
295
+ 'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
296
+ }
297
+ Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
298
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
299
+
300
+ #st.table(Sim_Winner_Frame)
301
+
302
+ # Initial setup
303
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
304
+ Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
305
+ Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
306
+ Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
307
+
308
+ # Type Casting
309
+ type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
310
+ Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
311
+
312
+ # Sorting
313
+ st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
314
+ st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
315
+
316
+ # Data Copying
317
+ st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
318
+
319
+ # Data Copying
320
+ st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
321
+
322
+ else:
323
+ if sim_site_var1 == 'Draftkings':
324
+ st.session_state.working_seed = DK_seed.copy()
325
+ elif sim_site_var1 == 'Fanduel':
326
+ st.session_state.working_seed = FD_seed.copy()
327
+ maps_dict = {
328
+ 'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
329
+ 'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
330
+ 'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
331
+ 'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
332
+ 'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
333
+ 'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
334
+ }
335
+ Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
336
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
337
+
338
+ #st.table(Sim_Winner_Frame)
339
+
340
+ # Initial setup
341
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
342
+ Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
343
+ Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
344
+ Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
345
+
346
+ # Type Casting
347
+ type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
348
+ Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
349
+
350
+ # Sorting
351
+ st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
352
+ st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
353
+
354
+ # Data Copying
355
+ st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
356
+
357
+ # Data Copying
358
+ st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
359
+ freq_copy = st.session_state.Sim_Winner_Display
360
+
361
+ if sim_site_var1 == 'Draftkings':
362
+ freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:9].values, return_counts=True)),
363
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
364
+ elif sim_site_var1 == 'Fanduel':
365
+ freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:9].values, return_counts=True)),
366
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
367
+ freq_working['Freq'] = freq_working['Freq'].astype(int)
368
+ freq_working['Position'] = freq_working['Player'].map(maps_dict['Pos_map'])
369
+ freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map'])
370
+ freq_working['Proj Own'] = freq_working['Player'].map(maps_dict['Own_map']) / 100
371
+ freq_working['Exposure'] = freq_working['Freq']/(1000)
372
+ freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
373
+ freq_working['Team'] = freq_working['Player'].map(maps_dict['Team_map'])
374
+ st.session_state.player_freq = freq_working.copy()
375
+
376
+ if sim_site_var1 == 'Draftkings':
377
+ qb_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
378
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
379
+ elif sim_site_var1 == 'Fanduel':
380
+ qb_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
381
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
382
+ qb_working['Freq'] = qb_working['Freq'].astype(int)
383
+ qb_working['Position'] = qb_working['Player'].map(maps_dict['Pos_map'])
384
+ qb_working['Salary'] = qb_working['Player'].map(maps_dict['Salary_map'])
385
+ qb_working['Proj Own'] = qb_working['Player'].map(maps_dict['Own_map']) / 100
386
+ qb_working['Exposure'] = qb_working['Freq']/(1000)
387
+ qb_working['Edge'] = qb_working['Exposure'] - qb_working['Proj Own']
388
+ qb_working['Team'] = qb_working['Player'].map(maps_dict['Team_map'])
389
+ st.session_state.qb_freq = qb_working.copy()
390
+
391
+ if sim_site_var1 == 'Draftkings':
392
+ rbwrte_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:7].values, return_counts=True)),
393
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
394
+ elif sim_site_var1 == 'Fanduel':
395
+ rbwrte_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:7].values, return_counts=True)),
396
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
397
+ rbwrte_working['Freq'] = rbwrte_working['Freq'].astype(int)
398
+ rbwrte_working['Position'] = rbwrte_working['Player'].map(maps_dict['Pos_map'])
399
+ rbwrte_working['Salary'] = rbwrte_working['Player'].map(maps_dict['Salary_map'])
400
+ rbwrte_working['Proj Own'] = rbwrte_working['Player'].map(maps_dict['Own_map']) / 100
401
+ rbwrte_working['Exposure'] = rbwrte_working['Freq']/(1000)
402
+ rbwrte_working['Edge'] = rbwrte_working['Exposure'] - rbwrte_working['Proj Own']
403
+ rbwrte_working['Team'] = rbwrte_working['Player'].map(maps_dict['Team_map'])
404
+ st.session_state.rbwrte_freq = rbwrte_working.copy()
405
+
406
+ if sim_site_var1 == 'Draftkings':
407
+ rb_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:3].values, return_counts=True)),
408
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
409
+ elif sim_site_var1 == 'Fanduel':
410
+ rb_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:3].values, return_counts=True)),
411
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
412
+ rb_working['Freq'] = rb_working['Freq'].astype(int)
413
+ rb_working['Position'] = rb_working['Player'].map(maps_dict['Pos_map'])
414
+ rb_working['Salary'] = rb_working['Player'].map(maps_dict['Salary_map'])
415
+ rb_working['Proj Own'] = rb_working['Player'].map(maps_dict['Own_map']) / 100
416
+ rb_working['Exposure'] = rb_working['Freq']/(1000)
417
+ rb_working['Edge'] = rb_working['Exposure'] - rb_working['Proj Own']
418
+ rb_working['Team'] = rb_working['Player'].map(maps_dict['Team_map'])
419
+ st.session_state.rb_freq = rb_working.copy()
420
+
421
+ if sim_site_var1 == 'Draftkings':
422
+ wr_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,3:6].values, return_counts=True)),
423
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
424
+ elif sim_site_var1 == 'Fanduel':
425
+ wr_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,3:6].values, return_counts=True)),
426
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
427
+ wr_working['Freq'] = wr_working['Freq'].astype(int)
428
+ wr_working['Position'] = wr_working['Player'].map(maps_dict['Pos_map'])
429
+ wr_working['Salary'] = wr_working['Player'].map(maps_dict['Salary_map'])
430
+ wr_working['Proj Own'] = wr_working['Player'].map(maps_dict['Own_map']) / 100
431
+ wr_working['Exposure'] = wr_working['Freq']/(1000)
432
+ wr_working['Edge'] = wr_working['Exposure'] - wr_working['Proj Own']
433
+ wr_working['Team'] = wr_working['Player'].map(maps_dict['Team_map'])
434
+ st.session_state.wr_freq = wr_working.copy()
435
+
436
+ if sim_site_var1 == 'Draftkings':
437
+ te_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,6:7].values, return_counts=True)),
438
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
439
+ elif sim_site_var1 == 'Fanduel':
440
+ te_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,6:7].values, return_counts=True)),
441
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
442
+ te_working['Freq'] = te_working['Freq'].astype(int)
443
+ te_working['Position'] = te_working['Player'].map(maps_dict['Pos_map'])
444
+ te_working['Salary'] = te_working['Player'].map(maps_dict['Salary_map'])
445
+ te_working['Proj Own'] = te_working['Player'].map(maps_dict['Own_map']) / 100
446
+ te_working['Exposure'] = te_working['Freq']/(1000)
447
+ te_working['Edge'] = te_working['Exposure'] - te_working['Proj Own']
448
+ te_working['Team'] = te_working['Player'].map(maps_dict['Team_map'])
449
+ st.session_state.te_freq = te_working.copy()
450
+
451
+ if sim_site_var1 == 'Draftkings':
452
+ flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,7:8].values, return_counts=True)),
453
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
454
+ elif sim_site_var1 == 'Fanduel':
455
+ flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,7:8].values, return_counts=True)),
456
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
457
+ flex_working['Freq'] = flex_working['Freq'].astype(int)
458
+ flex_working['Position'] = flex_working['Player'].map(maps_dict['Pos_map'])
459
+ flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
460
+ flex_working['Proj Own'] = flex_working['Player'].map(maps_dict['Own_map']) / 100
461
+ flex_working['Exposure'] = flex_working['Freq']/(1000)
462
+ flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
463
+ flex_working['Team'] = flex_working['Player'].map(maps_dict['Team_map'])
464
+ st.session_state.flex_freq = flex_working.copy()
465
+
466
+ if sim_site_var1 == 'Draftkings':
467
+ dst_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,8:9].values, return_counts=True)),
468
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
469
+ elif sim_site_var1 == 'Fanduel':
470
+ dst_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,8:9].values, return_counts=True)),
471
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
472
+ dst_working['Freq'] = dst_working['Freq'].astype(int)
473
+ dst_working['Position'] = dst_working['Player'].map(maps_dict['Pos_map'])
474
+ dst_working['Salary'] = dst_working['Player'].map(maps_dict['Salary_map'])
475
+ dst_working['Proj Own'] = dst_working['Player'].map(maps_dict['Own_map']) / 100
476
+ dst_working['Exposure'] = dst_working['Freq']/(1000)
477
+ dst_working['Edge'] = dst_working['Exposure'] - dst_working['Proj Own']
478
+ dst_working['Team'] = dst_working['Player'].map(maps_dict['Team_map'])
479
+ st.session_state.dst_freq = dst_working.copy()
480
+
481
+ if sim_site_var1 == 'Draftkings':
482
+ team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,11:12].values, return_counts=True)),
483
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
484
+ elif sim_site_var1 == 'Fanduel':
485
+ team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,11:12].values, return_counts=True)),
486
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
487
+ team_working['Freq'] = team_working['Freq'].astype(int)
488
+ team_working['Exposure'] = team_working['Freq']/(1000)
489
+ st.session_state.team_freq = team_working.copy()
490
+
491
+ with st.container():
492
+ if st.button("Reset Sim", key='reset_sim'):
493
+ for key in st.session_state.keys():
494
+ del st.session_state[key]
495
+ if 'player_freq' in st.session_state:
496
+ player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
497
+ if player_split_var2 == 'Specific Players':
498
+ find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
499
+ elif player_split_var2 == 'Full Players':
500
+ find_var2 = st.session_state.player_freq.Player.values.tolist()
501
+
502
+ if player_split_var2 == 'Specific Players':
503
+ st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
504
+ if player_split_var2 == 'Full Players':
505
+ st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
506
+ if 'Sim_Winner_Display' in st.session_state:
507
+ st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
508
+ if 'Sim_Winner_Export' in st.session_state:
509
+ st.download_button(
510
+ label="Export Full Frame",
511
+ data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
512
+ file_name='MLB_consim_export.csv',
513
+ mime='text/csv',
514
+ )
515
+
516
+ with st.container():
517
+ tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8, tab9 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB-WR-TE Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures', 'Team Exposures'])
518
+ with tab1:
519
+ if 'player_freq' in st.session_state:
520
+
521
+ st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
522
+ st.download_button(
523
+ label="Export Exposures",
524
+ data=st.session_state.player_freq.to_csv().encode('utf-8'),
525
+ file_name='player_freq_export.csv',
526
+ mime='text/csv',
527
+ key='overall'
528
+ )
529
+ with tab2:
530
+ if 'qb_freq' in st.session_state:
531
+
532
+ st.dataframe(st.session_state.qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
533
+ st.download_button(
534
+ label="Export Exposures",
535
+ data=st.session_state.qb_freq.to_csv().encode('utf-8'),
536
+ file_name='qb_freq.csv',
537
+ mime='text/csv',
538
+ key='qb'
539
+ )
540
+ with tab3:
541
+ if 'rbwrte_freq' in st.session_state:
542
+
543
+ st.dataframe(st.session_state.rbwrte_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
544
+ st.download_button(
545
+ label="Export Exposures",
546
+ data=st.session_state.rbwrte_freq.to_csv().encode('utf-8'),
547
+ file_name='rbwrte_freq.csv',
548
+ mime='text/csv',
549
+ key='rbwrte'
550
+ )
551
+ with tab4:
552
+ if 'rb_freq' in st.session_state:
553
+
554
+ st.dataframe(st.session_state.rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
555
+ st.download_button(
556
+ label="Export Exposures",
557
+ data=st.session_state.rb_freq.to_csv().encode('utf-8'),
558
+ file_name='rb_freq.csv',
559
+ mime='text/csv',
560
+ key='rb'
561
+ )
562
+ with tab5:
563
+ if 'wr_freq' in st.session_state:
564
+
565
+ st.dataframe(st.session_state.wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
566
+ st.download_button(
567
+ label="Export Exposures",
568
+ data=st.session_state.wr_freq.to_csv().encode('utf-8'),
569
+ file_name='wr_freq.csv',
570
+ mime='text/csv',
571
+ key='wr'
572
+ )
573
+ with tab6:
574
+ if 'te_freq' in st.session_state:
575
+
576
+ st.dataframe(st.session_state.te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
577
+ st.download_button(
578
+ label="Export Exposures",
579
+ data=st.session_state.te_freq.to_csv().encode('utf-8'),
580
+ file_name='te_freq.csv',
581
+ mime='text/csv',
582
+ key='te'
583
+ )
584
+ with tab7:
585
+ if 'flex_freq' in st.session_state:
586
+
587
+ st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
588
+ st.download_button(
589
+ label="Export Exposures",
590
+ data=st.session_state.flex_freq.to_csv().encode('utf-8'),
591
+ file_name='flex_freq.csv',
592
+ mime='text/csv',
593
+ key='flex'
594
+ )
595
+ with tab8:
596
+ if 'dst_freq' in st.session_state:
597
+
598
+ st.dataframe(st.session_state.dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
599
+ st.download_button(
600
+ label="Export Exposures",
601
+ data=st.session_state.dst_freq.to_csv().encode('utf-8'),
602
+ file_name='dst_freq.csv',
603
+ mime='text/csv',
604
+ key='dst'
605
+ )
606
+ with tab9:
607
+ if 'team_freq' in st.session_state:
608
+
609
+ st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
610
+ st.download_button(
611
+ label="Export Exposures",
612
+ data=st.session_state.team_freq.to_csv().encode('utf-8'),
613
+ file_name='team_freq.csv',
614
+ mime='text/csv',
615
+ key='team'
616
+ )