Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,616 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
st.set_page_config(layout="wide")
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import gspread
|
6 |
+
import pymongo
|
7 |
+
import time
|
8 |
+
|
9 |
+
@st.cache_resource
|
10 |
+
def init_conn():
|
11 |
+
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
12 |
+
|
13 |
+
credentials = {
|
14 |
+
"type": "service_account",
|
15 |
+
"project_id": "model-sheets-connect",
|
16 |
+
"private_key_id": st.secrets['model_sheets_connect_pk'],
|
17 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
|
18 |
+
"client_email": "[email protected]",
|
19 |
+
"client_id": "100369174533302798535",
|
20 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
21 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
22 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
23 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
|
24 |
+
}
|
25 |
+
|
26 |
+
credentials2 = {
|
27 |
+
"type": "service_account",
|
28 |
+
"project_id": "sheets-api-connect-378620",
|
29 |
+
"private_key_id": st.secrets['sheets_api_connect_pk'],
|
30 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
31 |
+
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
32 |
+
"client_id": "106625872877651920064",
|
33 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
34 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
35 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
36 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
37 |
+
}
|
38 |
+
|
39 |
+
uri = st.secrets['mongo_uri']
|
40 |
+
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
41 |
+
db = client["testing_db"]
|
42 |
+
|
43 |
+
NFL_Data = st.secrets['NFL_Data']
|
44 |
+
|
45 |
+
gc = gspread.service_account_from_dict(credentials)
|
46 |
+
gc2 = gspread.service_account_from_dict(credentials2)
|
47 |
+
|
48 |
+
return gc, gc2, db, NFL_Data
|
49 |
+
|
50 |
+
gcservice_account, gcservice_account2, db, NFL_Data = init_conn()
|
51 |
+
|
52 |
+
percentages_format = {'Exposure': '{:.2%}'}
|
53 |
+
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
|
54 |
+
dk_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
55 |
+
fd_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
56 |
+
|
57 |
+
@st.cache_data(ttl = 599)
|
58 |
+
def init_DK_seed_frames():
|
59 |
+
|
60 |
+
collection = db["DK_NFL_seed_frame"]
|
61 |
+
cursor = collection.find()
|
62 |
+
|
63 |
+
raw_display = pd.DataFrame(list(cursor))
|
64 |
+
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
65 |
+
DK_seed = raw_display.to_numpy()
|
66 |
+
|
67 |
+
return DK_seed
|
68 |
+
|
69 |
+
@st.cache_data(ttl = 599)
|
70 |
+
def init_FD_seed_frames():
|
71 |
+
|
72 |
+
collection = db["FD_NFL_seed_frame"]
|
73 |
+
cursor = collection.find()
|
74 |
+
|
75 |
+
raw_display = pd.DataFrame(list(cursor))
|
76 |
+
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
77 |
+
FD_seed = raw_display.to_numpy()
|
78 |
+
|
79 |
+
return FD_seed
|
80 |
+
|
81 |
+
@st.cache_data(ttl = 599)
|
82 |
+
def init_baselines():
|
83 |
+
try:
|
84 |
+
sh = gcservice_account.open_by_url(NFL_Data)
|
85 |
+
except:
|
86 |
+
sh = gcservice_account2.open_by_url(NFL_Data)
|
87 |
+
|
88 |
+
worksheet = sh.worksheet('DK_ROO')
|
89 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
90 |
+
load_display.replace('', np.nan, inplace=True)
|
91 |
+
load_display['STDev'] = load_display['Median'] / 4
|
92 |
+
load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
|
93 |
+
|
94 |
+
dk_raw = load_display.dropna(subset=['Median'])
|
95 |
+
|
96 |
+
worksheet = sh.worksheet('FD_ROO')
|
97 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
98 |
+
load_display.replace('', np.nan, inplace=True)
|
99 |
+
load_display['STDev'] = load_display['Median'] / 4
|
100 |
+
load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
|
101 |
+
|
102 |
+
fd_raw = load_display.dropna(subset=['Median'])
|
103 |
+
|
104 |
+
return dk_raw, fd_raw
|
105 |
+
|
106 |
+
@st.cache_data
|
107 |
+
def convert_df(array):
|
108 |
+
array = pd.DataFrame(array, columns=column_names)
|
109 |
+
return array.to_csv().encode('utf-8')
|
110 |
+
|
111 |
+
@st.cache_data
|
112 |
+
def calculate_DK_value_frequencies(np_array):
|
113 |
+
unique, counts = np.unique(np_array[:, :9], return_counts=True)
|
114 |
+
frequencies = counts / len(np_array) # Normalize by the number of rows
|
115 |
+
combined_array = np.column_stack((unique, frequencies))
|
116 |
+
return combined_array
|
117 |
+
|
118 |
+
@st.cache_data
|
119 |
+
def calculate_FD_value_frequencies(np_array):
|
120 |
+
unique, counts = np.unique(np_array[:, :9], return_counts=True)
|
121 |
+
frequencies = counts / len(np_array) # Normalize by the number of rows
|
122 |
+
combined_array = np.column_stack((unique, frequencies))
|
123 |
+
return combined_array
|
124 |
+
|
125 |
+
@st.cache_data
|
126 |
+
def sim_contest(Sim_size, seed_frame, maps_dict, sharp_split, Contest_Size):
|
127 |
+
SimVar = 1
|
128 |
+
Sim_Winners = []
|
129 |
+
fp_array = seed_frame[:sharp_split, :]
|
130 |
+
|
131 |
+
# Pre-vectorize functions
|
132 |
+
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
133 |
+
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
134 |
+
|
135 |
+
st.write('Simulating contest on frames')
|
136 |
+
|
137 |
+
while SimVar <= Sim_size:
|
138 |
+
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
|
139 |
+
|
140 |
+
sample_arrays1 = np.c_[
|
141 |
+
fp_random,
|
142 |
+
np.sum(np.random.normal(
|
143 |
+
loc=vec_projection_map(fp_random[:, :-7]),
|
144 |
+
scale=vec_stdev_map(fp_random[:, :-7])),
|
145 |
+
axis=1)
|
146 |
+
]
|
147 |
+
|
148 |
+
sample_arrays = sample_arrays1
|
149 |
+
|
150 |
+
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
|
151 |
+
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
152 |
+
Sim_Winners.append(best_lineup)
|
153 |
+
SimVar += 1
|
154 |
+
|
155 |
+
return Sim_Winners
|
156 |
+
|
157 |
+
DK_seed = init_DK_seed_frames()
|
158 |
+
FD_seed = init_FD_seed_frames()
|
159 |
+
dk_raw, fd_raw = init_baselines()
|
160 |
+
|
161 |
+
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
|
162 |
+
with tab2:
|
163 |
+
col1, col2 = st.columns([1, 7])
|
164 |
+
with col1:
|
165 |
+
if st.button("Load/Reset Data", key='reset1'):
|
166 |
+
st.cache_data.clear()
|
167 |
+
for key in st.session_state.keys():
|
168 |
+
del st.session_state[key]
|
169 |
+
DK_seed = init_DK_seed_frames()
|
170 |
+
FD_seed = init_FD_seed_frames()
|
171 |
+
dk_raw, fd_raw = init_baselines()
|
172 |
+
|
173 |
+
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
|
174 |
+
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
175 |
+
if site_var1 == 'Draftkings':
|
176 |
+
raw_baselines = dk_raw
|
177 |
+
column_names = dk_columns
|
178 |
+
|
179 |
+
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
180 |
+
if team_var1 == 'Specific Teams':
|
181 |
+
team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
|
182 |
+
elif team_var1 == 'Full Slate':
|
183 |
+
team_var2 = dk_raw.Team.values.tolist()
|
184 |
+
|
185 |
+
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
|
186 |
+
if stack_var1 == 'Specific Stack Sizes':
|
187 |
+
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
|
188 |
+
elif stack_var1 == 'Full Slate':
|
189 |
+
stack_var2 = [5, 4, 3, 2, 1, 0]
|
190 |
+
|
191 |
+
elif site_var1 == 'Fanduel':
|
192 |
+
raw_baselines = fd_raw
|
193 |
+
column_names = fd_columns
|
194 |
+
|
195 |
+
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
196 |
+
if team_var1 == 'Specific Teams':
|
197 |
+
team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
|
198 |
+
elif team_var1 == 'Full Slate':
|
199 |
+
team_var2 = fd_raw.Team.values.tolist()
|
200 |
+
|
201 |
+
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
|
202 |
+
if stack_var1 == 'Specific Stack Sizes':
|
203 |
+
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
|
204 |
+
elif stack_var1 == 'Full Slate':
|
205 |
+
stack_var2 = [5, 4, 3, 2, 1, 0]
|
206 |
+
|
207 |
+
|
208 |
+
if st.button("Prepare data export", key='data_export'):
|
209 |
+
data_export = st.session_state.working_seed.copy()
|
210 |
+
st.download_button(
|
211 |
+
label="Export optimals set",
|
212 |
+
data=convert_df(data_export),
|
213 |
+
file_name='NFL_optimals_export.csv',
|
214 |
+
mime='text/csv',
|
215 |
+
)
|
216 |
+
|
217 |
+
with col2:
|
218 |
+
if st.button("Load Data", key='load_data'):
|
219 |
+
if site_var1 == 'Draftkings':
|
220 |
+
if 'working_seed' in st.session_state:
|
221 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
222 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
223 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
224 |
+
elif 'working_seed' not in st.session_state:
|
225 |
+
st.session_state.working_seed = DK_seed.copy()
|
226 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
227 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
228 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
229 |
+
|
230 |
+
elif site_var1 == 'Fanduel':
|
231 |
+
if 'working_seed' in st.session_state:
|
232 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
233 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
234 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
235 |
+
elif 'working_seed' not in st.session_state:
|
236 |
+
st.session_state.working_seed = FD_seed.copy()
|
237 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
238 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
239 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
240 |
+
|
241 |
+
with st.container():
|
242 |
+
if 'data_export_display' in st.session_state:
|
243 |
+
st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)
|
244 |
+
|
245 |
+
with tab1:
|
246 |
+
col1, col2 = st.columns([1, 7])
|
247 |
+
with col1:
|
248 |
+
if st.button("Load/Reset Data", key='reset2'):
|
249 |
+
st.cache_data.clear()
|
250 |
+
for key in st.session_state.keys():
|
251 |
+
del st.session_state[key]
|
252 |
+
DK_seed = init_DK_seed_frames()
|
253 |
+
FD_seed = init_FD_seed_frames()
|
254 |
+
dk_raw, fd_raw = init_baselines()
|
255 |
+
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'), key='sim_slate_var1')
|
256 |
+
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
257 |
+
if sim_site_var1 == 'Draftkings':
|
258 |
+
raw_baselines = dk_raw
|
259 |
+
column_names = dk_columns
|
260 |
+
elif sim_site_var1 == 'Fanduel':
|
261 |
+
raw_baselines = fd_raw
|
262 |
+
column_names = fd_columns
|
263 |
+
|
264 |
+
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
265 |
+
if contest_var1 == 'Small':
|
266 |
+
Contest_Size = 1000
|
267 |
+
elif contest_var1 == 'Medium':
|
268 |
+
Contest_Size = 5000
|
269 |
+
elif contest_var1 == 'Large':
|
270 |
+
Contest_Size = 10000
|
271 |
+
elif contest_var1 == 'Custom':
|
272 |
+
Contest_Size = st.number_input("Insert contest size", value=100, placeholder="Type a number under 10,000...")
|
273 |
+
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
|
274 |
+
if strength_var1 == 'Not Very':
|
275 |
+
sharp_split = 500000
|
276 |
+
elif strength_var1 == 'Below Average':
|
277 |
+
sharp_split = 400000
|
278 |
+
elif strength_var1 == 'Average':
|
279 |
+
sharp_split = 300000
|
280 |
+
elif strength_var1 == 'Above Average':
|
281 |
+
sharp_split = 200000
|
282 |
+
elif strength_var1 == 'Very':
|
283 |
+
sharp_split = 100000
|
284 |
+
|
285 |
+
|
286 |
+
with col2:
|
287 |
+
if st.button("Run Contest Sim"):
|
288 |
+
if 'working_seed' in st.session_state:
|
289 |
+
maps_dict = {
|
290 |
+
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
291 |
+
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
292 |
+
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
293 |
+
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
294 |
+
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
295 |
+
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
296 |
+
}
|
297 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
|
298 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
299 |
+
|
300 |
+
#st.table(Sim_Winner_Frame)
|
301 |
+
|
302 |
+
# Initial setup
|
303 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
|
304 |
+
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
305 |
+
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
|
306 |
+
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
307 |
+
|
308 |
+
# Type Casting
|
309 |
+
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
|
310 |
+
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
311 |
+
|
312 |
+
# Sorting
|
313 |
+
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
|
314 |
+
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
|
315 |
+
|
316 |
+
# Data Copying
|
317 |
+
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
318 |
+
|
319 |
+
# Data Copying
|
320 |
+
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
321 |
+
|
322 |
+
else:
|
323 |
+
if sim_site_var1 == 'Draftkings':
|
324 |
+
st.session_state.working_seed = DK_seed.copy()
|
325 |
+
elif sim_site_var1 == 'Fanduel':
|
326 |
+
st.session_state.working_seed = FD_seed.copy()
|
327 |
+
maps_dict = {
|
328 |
+
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
329 |
+
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
330 |
+
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
331 |
+
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
332 |
+
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
333 |
+
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
334 |
+
}
|
335 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
|
336 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
337 |
+
|
338 |
+
#st.table(Sim_Winner_Frame)
|
339 |
+
|
340 |
+
# Initial setup
|
341 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
|
342 |
+
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
343 |
+
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
|
344 |
+
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
345 |
+
|
346 |
+
# Type Casting
|
347 |
+
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
|
348 |
+
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
349 |
+
|
350 |
+
# Sorting
|
351 |
+
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
|
352 |
+
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
|
353 |
+
|
354 |
+
# Data Copying
|
355 |
+
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
356 |
+
|
357 |
+
# Data Copying
|
358 |
+
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
359 |
+
freq_copy = st.session_state.Sim_Winner_Display
|
360 |
+
|
361 |
+
if sim_site_var1 == 'Draftkings':
|
362 |
+
freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:9].values, return_counts=True)),
|
363 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
364 |
+
elif sim_site_var1 == 'Fanduel':
|
365 |
+
freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:9].values, return_counts=True)),
|
366 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
367 |
+
freq_working['Freq'] = freq_working['Freq'].astype(int)
|
368 |
+
freq_working['Position'] = freq_working['Player'].map(maps_dict['Pos_map'])
|
369 |
+
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map'])
|
370 |
+
freq_working['Proj Own'] = freq_working['Player'].map(maps_dict['Own_map']) / 100
|
371 |
+
freq_working['Exposure'] = freq_working['Freq']/(1000)
|
372 |
+
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
|
373 |
+
freq_working['Team'] = freq_working['Player'].map(maps_dict['Team_map'])
|
374 |
+
st.session_state.player_freq = freq_working.copy()
|
375 |
+
|
376 |
+
if sim_site_var1 == 'Draftkings':
|
377 |
+
qb_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
|
378 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
379 |
+
elif sim_site_var1 == 'Fanduel':
|
380 |
+
qb_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
|
381 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
382 |
+
qb_working['Freq'] = qb_working['Freq'].astype(int)
|
383 |
+
qb_working['Position'] = qb_working['Player'].map(maps_dict['Pos_map'])
|
384 |
+
qb_working['Salary'] = qb_working['Player'].map(maps_dict['Salary_map'])
|
385 |
+
qb_working['Proj Own'] = qb_working['Player'].map(maps_dict['Own_map']) / 100
|
386 |
+
qb_working['Exposure'] = qb_working['Freq']/(1000)
|
387 |
+
qb_working['Edge'] = qb_working['Exposure'] - qb_working['Proj Own']
|
388 |
+
qb_working['Team'] = qb_working['Player'].map(maps_dict['Team_map'])
|
389 |
+
st.session_state.qb_freq = qb_working.copy()
|
390 |
+
|
391 |
+
if sim_site_var1 == 'Draftkings':
|
392 |
+
rbwrte_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:7].values, return_counts=True)),
|
393 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
394 |
+
elif sim_site_var1 == 'Fanduel':
|
395 |
+
rbwrte_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:7].values, return_counts=True)),
|
396 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
397 |
+
rbwrte_working['Freq'] = rbwrte_working['Freq'].astype(int)
|
398 |
+
rbwrte_working['Position'] = rbwrte_working['Player'].map(maps_dict['Pos_map'])
|
399 |
+
rbwrte_working['Salary'] = rbwrte_working['Player'].map(maps_dict['Salary_map'])
|
400 |
+
rbwrte_working['Proj Own'] = rbwrte_working['Player'].map(maps_dict['Own_map']) / 100
|
401 |
+
rbwrte_working['Exposure'] = rbwrte_working['Freq']/(1000)
|
402 |
+
rbwrte_working['Edge'] = rbwrte_working['Exposure'] - rbwrte_working['Proj Own']
|
403 |
+
rbwrte_working['Team'] = rbwrte_working['Player'].map(maps_dict['Team_map'])
|
404 |
+
st.session_state.rbwrte_freq = rbwrte_working.copy()
|
405 |
+
|
406 |
+
if sim_site_var1 == 'Draftkings':
|
407 |
+
rb_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:3].values, return_counts=True)),
|
408 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
409 |
+
elif sim_site_var1 == 'Fanduel':
|
410 |
+
rb_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:3].values, return_counts=True)),
|
411 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
412 |
+
rb_working['Freq'] = rb_working['Freq'].astype(int)
|
413 |
+
rb_working['Position'] = rb_working['Player'].map(maps_dict['Pos_map'])
|
414 |
+
rb_working['Salary'] = rb_working['Player'].map(maps_dict['Salary_map'])
|
415 |
+
rb_working['Proj Own'] = rb_working['Player'].map(maps_dict['Own_map']) / 100
|
416 |
+
rb_working['Exposure'] = rb_working['Freq']/(1000)
|
417 |
+
rb_working['Edge'] = rb_working['Exposure'] - rb_working['Proj Own']
|
418 |
+
rb_working['Team'] = rb_working['Player'].map(maps_dict['Team_map'])
|
419 |
+
st.session_state.rb_freq = rb_working.copy()
|
420 |
+
|
421 |
+
if sim_site_var1 == 'Draftkings':
|
422 |
+
wr_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,3:6].values, return_counts=True)),
|
423 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
424 |
+
elif sim_site_var1 == 'Fanduel':
|
425 |
+
wr_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,3:6].values, return_counts=True)),
|
426 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
427 |
+
wr_working['Freq'] = wr_working['Freq'].astype(int)
|
428 |
+
wr_working['Position'] = wr_working['Player'].map(maps_dict['Pos_map'])
|
429 |
+
wr_working['Salary'] = wr_working['Player'].map(maps_dict['Salary_map'])
|
430 |
+
wr_working['Proj Own'] = wr_working['Player'].map(maps_dict['Own_map']) / 100
|
431 |
+
wr_working['Exposure'] = wr_working['Freq']/(1000)
|
432 |
+
wr_working['Edge'] = wr_working['Exposure'] - wr_working['Proj Own']
|
433 |
+
wr_working['Team'] = wr_working['Player'].map(maps_dict['Team_map'])
|
434 |
+
st.session_state.wr_freq = wr_working.copy()
|
435 |
+
|
436 |
+
if sim_site_var1 == 'Draftkings':
|
437 |
+
te_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,6:7].values, return_counts=True)),
|
438 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
439 |
+
elif sim_site_var1 == 'Fanduel':
|
440 |
+
te_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,6:7].values, return_counts=True)),
|
441 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
442 |
+
te_working['Freq'] = te_working['Freq'].astype(int)
|
443 |
+
te_working['Position'] = te_working['Player'].map(maps_dict['Pos_map'])
|
444 |
+
te_working['Salary'] = te_working['Player'].map(maps_dict['Salary_map'])
|
445 |
+
te_working['Proj Own'] = te_working['Player'].map(maps_dict['Own_map']) / 100
|
446 |
+
te_working['Exposure'] = te_working['Freq']/(1000)
|
447 |
+
te_working['Edge'] = te_working['Exposure'] - te_working['Proj Own']
|
448 |
+
te_working['Team'] = te_working['Player'].map(maps_dict['Team_map'])
|
449 |
+
st.session_state.te_freq = te_working.copy()
|
450 |
+
|
451 |
+
if sim_site_var1 == 'Draftkings':
|
452 |
+
flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,7:8].values, return_counts=True)),
|
453 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
454 |
+
elif sim_site_var1 == 'Fanduel':
|
455 |
+
flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,7:8].values, return_counts=True)),
|
456 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
457 |
+
flex_working['Freq'] = flex_working['Freq'].astype(int)
|
458 |
+
flex_working['Position'] = flex_working['Player'].map(maps_dict['Pos_map'])
|
459 |
+
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
|
460 |
+
flex_working['Proj Own'] = flex_working['Player'].map(maps_dict['Own_map']) / 100
|
461 |
+
flex_working['Exposure'] = flex_working['Freq']/(1000)
|
462 |
+
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
|
463 |
+
flex_working['Team'] = flex_working['Player'].map(maps_dict['Team_map'])
|
464 |
+
st.session_state.flex_freq = flex_working.copy()
|
465 |
+
|
466 |
+
if sim_site_var1 == 'Draftkings':
|
467 |
+
dst_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,8:9].values, return_counts=True)),
|
468 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
469 |
+
elif sim_site_var1 == 'Fanduel':
|
470 |
+
dst_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,8:9].values, return_counts=True)),
|
471 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
472 |
+
dst_working['Freq'] = dst_working['Freq'].astype(int)
|
473 |
+
dst_working['Position'] = dst_working['Player'].map(maps_dict['Pos_map'])
|
474 |
+
dst_working['Salary'] = dst_working['Player'].map(maps_dict['Salary_map'])
|
475 |
+
dst_working['Proj Own'] = dst_working['Player'].map(maps_dict['Own_map']) / 100
|
476 |
+
dst_working['Exposure'] = dst_working['Freq']/(1000)
|
477 |
+
dst_working['Edge'] = dst_working['Exposure'] - dst_working['Proj Own']
|
478 |
+
dst_working['Team'] = dst_working['Player'].map(maps_dict['Team_map'])
|
479 |
+
st.session_state.dst_freq = dst_working.copy()
|
480 |
+
|
481 |
+
if sim_site_var1 == 'Draftkings':
|
482 |
+
team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,11:12].values, return_counts=True)),
|
483 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
484 |
+
elif sim_site_var1 == 'Fanduel':
|
485 |
+
team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,11:12].values, return_counts=True)),
|
486 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
487 |
+
team_working['Freq'] = team_working['Freq'].astype(int)
|
488 |
+
team_working['Exposure'] = team_working['Freq']/(1000)
|
489 |
+
st.session_state.team_freq = team_working.copy()
|
490 |
+
|
491 |
+
with st.container():
|
492 |
+
if st.button("Reset Sim", key='reset_sim'):
|
493 |
+
for key in st.session_state.keys():
|
494 |
+
del st.session_state[key]
|
495 |
+
if 'player_freq' in st.session_state:
|
496 |
+
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
|
497 |
+
if player_split_var2 == 'Specific Players':
|
498 |
+
find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
|
499 |
+
elif player_split_var2 == 'Full Players':
|
500 |
+
find_var2 = st.session_state.player_freq.Player.values.tolist()
|
501 |
+
|
502 |
+
if player_split_var2 == 'Specific Players':
|
503 |
+
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
|
504 |
+
if player_split_var2 == 'Full Players':
|
505 |
+
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
|
506 |
+
if 'Sim_Winner_Display' in st.session_state:
|
507 |
+
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
508 |
+
if 'Sim_Winner_Export' in st.session_state:
|
509 |
+
st.download_button(
|
510 |
+
label="Export Full Frame",
|
511 |
+
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
|
512 |
+
file_name='MLB_consim_export.csv',
|
513 |
+
mime='text/csv',
|
514 |
+
)
|
515 |
+
|
516 |
+
with st.container():
|
517 |
+
tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8, tab9 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB-WR-TE Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures', 'Team Exposures'])
|
518 |
+
with tab1:
|
519 |
+
if 'player_freq' in st.session_state:
|
520 |
+
|
521 |
+
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
522 |
+
st.download_button(
|
523 |
+
label="Export Exposures",
|
524 |
+
data=st.session_state.player_freq.to_csv().encode('utf-8'),
|
525 |
+
file_name='player_freq_export.csv',
|
526 |
+
mime='text/csv',
|
527 |
+
key='overall'
|
528 |
+
)
|
529 |
+
with tab2:
|
530 |
+
if 'qb_freq' in st.session_state:
|
531 |
+
|
532 |
+
st.dataframe(st.session_state.qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
533 |
+
st.download_button(
|
534 |
+
label="Export Exposures",
|
535 |
+
data=st.session_state.qb_freq.to_csv().encode('utf-8'),
|
536 |
+
file_name='qb_freq.csv',
|
537 |
+
mime='text/csv',
|
538 |
+
key='qb'
|
539 |
+
)
|
540 |
+
with tab3:
|
541 |
+
if 'rbwrte_freq' in st.session_state:
|
542 |
+
|
543 |
+
st.dataframe(st.session_state.rbwrte_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
544 |
+
st.download_button(
|
545 |
+
label="Export Exposures",
|
546 |
+
data=st.session_state.rbwrte_freq.to_csv().encode('utf-8'),
|
547 |
+
file_name='rbwrte_freq.csv',
|
548 |
+
mime='text/csv',
|
549 |
+
key='rbwrte'
|
550 |
+
)
|
551 |
+
with tab4:
|
552 |
+
if 'rb_freq' in st.session_state:
|
553 |
+
|
554 |
+
st.dataframe(st.session_state.rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
555 |
+
st.download_button(
|
556 |
+
label="Export Exposures",
|
557 |
+
data=st.session_state.rb_freq.to_csv().encode('utf-8'),
|
558 |
+
file_name='rb_freq.csv',
|
559 |
+
mime='text/csv',
|
560 |
+
key='rb'
|
561 |
+
)
|
562 |
+
with tab5:
|
563 |
+
if 'wr_freq' in st.session_state:
|
564 |
+
|
565 |
+
st.dataframe(st.session_state.wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
566 |
+
st.download_button(
|
567 |
+
label="Export Exposures",
|
568 |
+
data=st.session_state.wr_freq.to_csv().encode('utf-8'),
|
569 |
+
file_name='wr_freq.csv',
|
570 |
+
mime='text/csv',
|
571 |
+
key='wr'
|
572 |
+
)
|
573 |
+
with tab6:
|
574 |
+
if 'te_freq' in st.session_state:
|
575 |
+
|
576 |
+
st.dataframe(st.session_state.te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
577 |
+
st.download_button(
|
578 |
+
label="Export Exposures",
|
579 |
+
data=st.session_state.te_freq.to_csv().encode('utf-8'),
|
580 |
+
file_name='te_freq.csv',
|
581 |
+
mime='text/csv',
|
582 |
+
key='te'
|
583 |
+
)
|
584 |
+
with tab7:
|
585 |
+
if 'flex_freq' in st.session_state:
|
586 |
+
|
587 |
+
st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
588 |
+
st.download_button(
|
589 |
+
label="Export Exposures",
|
590 |
+
data=st.session_state.flex_freq.to_csv().encode('utf-8'),
|
591 |
+
file_name='flex_freq.csv',
|
592 |
+
mime='text/csv',
|
593 |
+
key='flex'
|
594 |
+
)
|
595 |
+
with tab8:
|
596 |
+
if 'dst_freq' in st.session_state:
|
597 |
+
|
598 |
+
st.dataframe(st.session_state.dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
599 |
+
st.download_button(
|
600 |
+
label="Export Exposures",
|
601 |
+
data=st.session_state.dst_freq.to_csv().encode('utf-8'),
|
602 |
+
file_name='dst_freq.csv',
|
603 |
+
mime='text/csv',
|
604 |
+
key='dst'
|
605 |
+
)
|
606 |
+
with tab9:
|
607 |
+
if 'team_freq' in st.session_state:
|
608 |
+
|
609 |
+
st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
|
610 |
+
st.download_button(
|
611 |
+
label="Export Exposures",
|
612 |
+
data=st.session_state.team_freq.to_csv().encode('utf-8'),
|
613 |
+
file_name='team_freq.csv',
|
614 |
+
mime='text/csv',
|
615 |
+
key='team'
|
616 |
+
)
|