Multichem commited on
Commit
7ec6c72
·
verified ·
1 Parent(s): ad72247

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +549 -0
app.py ADDED
@@ -0,0 +1,549 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pulp
2
+ import numpy as np
3
+ import pandas as pd
4
+ import random
5
+ import sys
6
+ import openpyxl
7
+ import re
8
+ import time
9
+ import streamlit as st
10
+ import matplotlib
11
+ from matplotlib.colors import LinearSegmentedColormap
12
+ from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
13
+ import json
14
+ import requests
15
+ import gspread
16
+ import plotly.figure_factory as ff
17
+
18
+ scope = ['https://www.googleapis.com/auth/spreadsheets',
19
+ "https://www.googleapis.com/auth/drive"]
20
+
21
+ credentials = {
22
+ "type": "service_account",
23
+ "project_id": "sheets-api-connect-378620",
24
+ "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
25
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
26
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
27
+ "client_id": "106625872877651920064",
28
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
29
+ "token_uri": "https://oauth2.googleapis.com/token",
30
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
31
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
32
+ }
33
+
34
+ gc = gspread.service_account_from_dict(credentials)
35
+
36
+ st.set_page_config(layout="wide")
37
+
38
+ game_format = {'Win Percentage': '{:.2%}','Cover Spread Percentage': '{:.2%}', 'First Inning Lead Percentage': '{:.2%}',
39
+ 'Fifth Inning Lead Percentage': '{:.2%}'}
40
+ american_format = {'First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead Percentage': '{:.2%}'}
41
+
42
+ master_hold = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=340831852'
43
+
44
+ @st.cache_data
45
+ def load_pitcher_props():
46
+ sh = gc.open_by_url(master_hold)
47
+ worksheet = sh.worksheet('Pitcher_Stats')
48
+ props_frame_hold = pd.DataFrame(worksheet.get_all_records())
49
+ props_frame_hold.rename(columns={"Names": "Player"}, inplace = True)
50
+ props_frame_hold = props_frame_hold[['Player', 'Team', 'BB', 'Hits', 'HRs', 'ERs', 'Ks', 'Outs', 'Fantasy', 'FD_Fantasy', 'PrizePicks']]
51
+ props_frame_hold = props_frame_hold.drop_duplicates(subset='Player')
52
+
53
+ return props_frame_hold
54
+
55
+ @st.cache_data
56
+ def load_time():
57
+ sh = gc.open_by_url(master_hold)
58
+ worksheet = sh.worksheet('Timestamp')
59
+ raw_stamp = worksheet.acell('a1').value
60
+
61
+ t_stamp = f"Last update was at {raw_stamp}"
62
+
63
+ return t_stamp
64
+
65
+ @st.cache_data
66
+ def load_hitter_props():
67
+ sh = gc.open_by_url(master_hold)
68
+ worksheet = sh.worksheet('Hitter_Stats')
69
+ props_frame_hold = pd.DataFrame(worksheet.get_all_records())
70
+ props_frame_hold.rename(columns={"Names": "Player"}, inplace = True)
71
+ props_frame_hold = props_frame_hold[['Player', 'Team', 'Walks', 'Steals', 'Hits', 'Singles', 'Doubles', 'HRs', 'RBIs', 'Runs', 'Fantasy', 'FD_Fantasy', 'PrizePicks']]
72
+ props_frame_hold['Total Bases'] = props_frame_hold['Singles'] + (props_frame_hold['Doubles'] * 2) + (props_frame_hold['HRs'] * 4)
73
+ props_frame_hold['Hits + Runs + RBIs'] = props_frame_hold['Hits'] + props_frame_hold['Runs'] + props_frame_hold['RBIs']
74
+ props_frame_hold = props_frame_hold.drop_duplicates(subset='Player')
75
+
76
+ return props_frame_hold
77
+
78
+ @st.cache_data
79
+ def load_team_table():
80
+ sh = gc.open_by_url(master_hold)
81
+ worksheet = sh.worksheet('Game_Betting_Model')
82
+ team_frame = pd.DataFrame(worksheet.get_all_records())
83
+ team_frame = team_frame.drop_duplicates(subset='Names')
84
+ team_frame['Win Percentage'] = team_frame['Win Percentage'].str.replace('%', '').astype('float')/100
85
+ team_frame['Cover Spread Percentage'] = team_frame['Cover Spread Percentage'].str.replace('%', '').astype('float')/100
86
+
87
+ return team_frame
88
+
89
+ @st.cache_data
90
+ def load_strikeout_props():
91
+ sh = gc.open_by_url(master_hold)
92
+ worksheet = sh.worksheet('Strikeout_Props')
93
+ prop_type_frame = pd.DataFrame(worksheet.get_all_records())
94
+ prop_type_frame = prop_type_frame.drop_duplicates(subset='Player')
95
+
96
+ return prop_type_frame
97
+
98
+ @st.cache_data
99
+ def load_total_outs_props():
100
+ sh = gc.open_by_url(master_hold)
101
+ worksheet = sh.worksheet('Total_Outs_Props')
102
+ prop_type_frame = pd.DataFrame(worksheet.get_all_records())
103
+ prop_type_frame = prop_type_frame.drop_duplicates(subset='Player')
104
+
105
+ return prop_type_frame
106
+
107
+ @st.cache_data
108
+ def load_total_bases_props():
109
+ sh = gc.open_by_url(master_hold)
110
+ worksheet = sh.worksheet('Total_Base_Props')
111
+ prop_type_frame = pd.DataFrame(worksheet.get_all_records())
112
+ prop_type_frame = prop_type_frame.drop_duplicates(subset='Player')
113
+
114
+ return prop_type_frame
115
+
116
+ @st.cache_data
117
+ def load_stolen_bases_props():
118
+ sh = gc.open_by_url(master_hold)
119
+ worksheet = sh.worksheet('SB_Props')
120
+ prop_type_frame = pd.DataFrame(worksheet.get_all_records())
121
+ prop_type_frame = prop_type_frame.drop_duplicates(subset='Player')
122
+
123
+ return prop_type_frame
124
+
125
+ pitcher_frame_hold = load_pitcher_props()
126
+ hitter_frame_hold = load_hitter_props()
127
+ team_frame_hold = load_team_table()
128
+ t_stamp = load_time()
129
+
130
+ tab1, tab2, tab3, tab4, tab5 = st.tabs(["Game Betting Model", "Pitcher Prop Projections", "Hitter Prop Projections", "Player Prop Simulations", "Stat Specific Simulations"])
131
+
132
+ def convert_df_to_csv(df):
133
+ return df.to_csv().encode('utf-8')
134
+
135
+ with tab1:
136
+ st.info(t_stamp)
137
+ if st.button("Reset Data", key='reset1'):
138
+ st.cache_data.clear()
139
+ pitcher_frame_hold = load_pitcher_props()
140
+ hitter_frame_hold = load_hitter_props()
141
+ team_frame_hold = load_team_table()
142
+ t_stamp = load_time()
143
+ line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
144
+ team_frame = team_frame_hold
145
+ if line_var1 == 'Percentage':
146
+ team_frame = team_frame[['Names', 'Game', 'Win Percentage', 'Spread', 'Cover Spread Percentage', 'Avg Score', 'Game Total', 'Avg Fifth Inning', 'Fifth Inning Lead Percentage']]
147
+ team_frame = team_frame.set_index('Names')
148
+ st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), use_container_width = True)
149
+ if line_var1 == 'American':
150
+ team_frame = team_frame[['Names', 'Game', 'American ML', 'Spread', 'American Cover', 'Avg Score', 'Game Total', 'Avg Fifth Inning', 'Fifth Inning Lead Percentage']]
151
+ team_frame.rename(columns={"American ML": "Win Percentage", "American Cover": "Cover Spread Percentage"}, inplace = True)
152
+ team_frame = team_frame.set_index('Names')
153
+ st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(american_format, precision=2), use_container_width = True)
154
+
155
+ st.download_button(
156
+ label="Export Team Model",
157
+ data=convert_df_to_csv(team_frame),
158
+ file_name='MLB_team_betting_export.csv',
159
+ mime='text/csv',
160
+ key='team_export',
161
+ )
162
+
163
+ with tab2:
164
+ st.info(t_stamp)
165
+ if st.button("Reset Data", key='reset2'):
166
+ st.cache_data.clear()
167
+ pitcher_frame_hold = load_pitcher_props()
168
+ hitter_frame_hold = load_hitter_props()
169
+ team_frame_hold = load_team_table()
170
+ t_stamp = load_time()
171
+ split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
172
+ if split_var1 == 'Specific Teams':
173
+ team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = pitcher_frame_hold['Team'].unique(), key='team_var1')
174
+ elif split_var1 == 'All':
175
+ team_var1 = pitcher_frame_hold.Team.values.tolist()
176
+ pitcher_frame_hold = pitcher_frame_hold[pitcher_frame_hold['Team'].isin(team_var1)]
177
+ pitcher_frame = pitcher_frame_hold.set_index('Player')
178
+ pitcher_frame = pitcher_frame.sort_values(by='Ks', ascending=False)
179
+ st.dataframe(pitcher_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
180
+ st.download_button(
181
+ label="Export Prop Model",
182
+ data=convert_df_to_csv(pitcher_frame),
183
+ file_name='MLB_pitcher_prop_export.csv',
184
+ mime='text/csv',
185
+ key='pitcher_prop_export',
186
+ )
187
+
188
+ with tab3:
189
+ st.info(t_stamp)
190
+ if st.button("Reset Data", key='reset3'):
191
+ st.cache_data.clear()
192
+ pitcher_frame_hold = load_pitcher_props()
193
+ hitter_frame_hold = load_hitter_props()
194
+ team_frame_hold = load_team_table()
195
+ t_stamp = load_time()
196
+ split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
197
+ if split_var2 == 'Specific Teams':
198
+ team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = hitter_frame_hold['Team'].unique(), key='team_var2')
199
+ elif split_var2 == 'All':
200
+ team_var2 = hitter_frame_hold.Team.values.tolist()
201
+ hitter_frame_hold = hitter_frame_hold[hitter_frame_hold['Team'].isin(team_var2)]
202
+ hitter_frame = hitter_frame_hold.set_index('Player')
203
+ hitter_frame = hitter_frame.sort_values(by='Hits + Runs + RBIs', ascending=False)
204
+ st.dataframe(hitter_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
205
+ st.download_button(
206
+ label="Export Prop Model",
207
+ data=convert_df_to_csv(hitter_frame),
208
+ file_name='MLB_hitter_prop_export.csv',
209
+ mime='text/csv',
210
+ key='hitter_prop_export',
211
+ )
212
+
213
+ with tab4:
214
+ st.info(t_stamp)
215
+ if st.button("Reset Data", key='reset4'):
216
+ st.cache_data.clear()
217
+ pitcher_frame_hold = load_pitcher_props()
218
+ hitter_frame_hold = load_hitter_props()
219
+ team_frame_hold = load_team_table()
220
+ t_stamp = load_time()
221
+ col1, col2 = st.columns([1, 5])
222
+
223
+ with col2:
224
+ df_hold_container = st.empty()
225
+ info_hold_container = st.empty()
226
+ plot_hold_container = st.empty()
227
+
228
+ with col1:
229
+ prop_group_var = st.selectbox('What kind of props are you simulating?', options = ['Pitchers', 'Hitters'])
230
+ if prop_group_var == 'Pitchers':
231
+ player_check = st.selectbox('Select player to simulate props', options = pitcher_frame_hold['Player'].unique())
232
+ prop_type_var = st.selectbox('Select type of prop to simulate', options = ['Strikeouts', 'Walks', 'Hits', 'Homeruns', 'Earned Runs', 'Outs', 'Fantasy', 'FD_Fantasy', 'PrizePicks'])
233
+ elif prop_group_var == 'Hitters':
234
+ player_check = st.selectbox('Select player to simulate props', options = hitter_frame_hold['Player'].unique())
235
+ prop_type_var = st.selectbox('Select type of prop to simulate', options = ['Total Bases', 'Walks', 'Steals', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'RBIs', 'Runs', 'Hits + Runs + RBIs', 'Fantasy', 'FD_Fantasy', 'PrizePicks'])
236
+
237
+ ou_var = st.selectbox('Select wether it is an over or under', options = ['Over', 'Under'])
238
+ prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 5.5, step = .5)
239
+ line_var = st.number_input('Type in the line on the prop (i.e. -120)', min_value = -1000, max_value = 1000, value = -150, step = 1)
240
+ line_var = line_var + 1
241
+
242
+ if st.button('Simulate Prop'):
243
+ with col2:
244
+
245
+ with df_hold_container.container():
246
+
247
+ if prop_group_var == 'Pitchers':
248
+ df = pitcher_frame_hold
249
+ elif prop_group_var == 'Hitters':
250
+ df = hitter_frame_hold
251
+
252
+ total_sims = 1000
253
+
254
+ df.replace("", 0, inplace=True)
255
+
256
+ player_var = df.loc[df['Player'] == player_check]
257
+ player_var = player_var.reset_index()
258
+
259
+ if prop_group_var == 'Pitchers':
260
+ if prop_type_var == "Walks":
261
+ df['Median'] = df['BB']
262
+ elif prop_type_var == "Hits":
263
+ df['Median'] = df['Hits']
264
+ elif prop_type_var == "Homeruns":
265
+ df['Median'] = df['HRs']
266
+ elif prop_type_var == "Earned Runs":
267
+ df['Median'] = df['ERs']
268
+ elif prop_type_var == "Strikeouts":
269
+ df['Median'] = df['Ks']
270
+ elif prop_type_var == "Outs":
271
+ df['Median'] = df['Outs']
272
+ elif prop_type_var == "Fantasy":
273
+ df['Median'] = df['Fantasy']
274
+ elif prop_type_var == "FD_Fantasy":
275
+ df['Median'] = df['FD_Fantasy']
276
+ elif prop_type_var == "PrizePicks":
277
+ df['Median'] = df['PrizePicks']
278
+ elif prop_group_var == 'Hitters':
279
+ if prop_type_var == "Walks":
280
+ df['Median'] = df['Walks']
281
+ elif prop_type_var == "Total Bases":
282
+ df['Median'] = df['Total Bases']
283
+ elif prop_type_var == "Hits + Runs + RBIs":
284
+ df['Median'] = df['Hits + Runs + RBIs']
285
+ elif prop_type_var == "Steals":
286
+ df['Median'] = df['Steals']
287
+ elif prop_type_var == "Hits":
288
+ df['Median'] = df['Hits']
289
+ elif prop_type_var == "Singles":
290
+ df['Median'] = df['Singles']
291
+ elif prop_type_var == "Doubles":
292
+ df['Median'] = df['Doubles']
293
+ elif prop_type_var == "Homeruns":
294
+ df['Median'] = df['HRs']
295
+ elif prop_type_var == "RBIs":
296
+ df['Median'] = df['RBIs']
297
+ elif prop_type_var == "Runs":
298
+ df['Median'] = df['Runs']
299
+ elif prop_type_var == "Fantasy":
300
+ df['Median'] = df['Fantasy']
301
+ elif prop_type_var == "FD_Fantasy":
302
+ df['Median'] = df['FD_Fantasy']
303
+ elif prop_type_var == "PrizePicks":
304
+ df['Median'] = df['PrizePicks']
305
+
306
+ flex_file = df
307
+ if prop_group_var == 'Pitchers':
308
+ flex_file['Floor'] = flex_file['Median'] * .20
309
+ flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80)
310
+ flex_file['STD'] = flex_file['Median'] / 4
311
+ flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
312
+
313
+ elif prop_group_var == 'Hitters':
314
+ flex_file['Floor'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] * .20, 0)
315
+ flex_file['Ceiling'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] + (flex_file['Median'] * .80), flex_file['Median'] * 4)
316
+ flex_file['STD'] = flex_file['Median'] / 1.5
317
+ flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
318
+
319
+ hold_file = flex_file
320
+ overall_file = flex_file
321
+ salary_file = flex_file
322
+
323
+ overall_players = overall_file[['Player']]
324
+
325
+ for x in range(0,total_sims):
326
+ overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
327
+
328
+ overall_file=overall_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
329
+ overall_file.astype('int').dtypes
330
+
331
+ players_only = hold_file[['Player']]
332
+
333
+ player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
334
+
335
+ players_only['Mean_Outcome'] = overall_file.mean(axis=1)
336
+ players_only['10%'] = overall_file.quantile(0.1, axis=1)
337
+ players_only['90%'] = overall_file.quantile(0.9, axis=1)
338
+ if ou_var == 'Over':
339
+ players_only['beat_prop'] = overall_file[overall_file > prop_var].count(axis=1)/float(total_sims)
340
+ elif ou_var == 'Under':
341
+ players_only['beat_prop'] = (overall_file[overall_file < prop_var].count(axis=1)/float(total_sims))
342
+
343
+ players_only['implied_odds'] = np.where(line_var <= 0, (-(line_var)/((-(line_var))+100)), 100/(line_var+100))
344
+
345
+ players_only['Player'] = hold_file[['Player']]
346
+
347
+ final_outcomes = players_only[['Player', '10%', 'Mean_Outcome', '90%', 'implied_odds', 'beat_prop']]
348
+ final_outcomes['Bet?'] = np.where(final_outcomes['beat_prop'] - final_outcomes['implied_odds'] >= .10, "Bet", "No Bet")
349
+ final_outcomes = final_outcomes.loc[final_outcomes['Player'] == player_check]
350
+ player_outcomes = player_outcomes.loc[player_outcomes['Player'] == player_check]
351
+ player_outcomes = player_outcomes.drop(columns=['Player']).transpose()
352
+ player_outcomes = player_outcomes.reset_index()
353
+ player_outcomes.columns = ['Instance', 'Outcome']
354
+
355
+ x1 = player_outcomes.Outcome.to_numpy()
356
+
357
+ print(x1)
358
+
359
+ hist_data = [x1]
360
+
361
+ group_labels = ['player outcomes']
362
+
363
+ fig = ff.create_distplot(
364
+ hist_data, group_labels, bin_size=[.05])
365
+ fig.add_vline(x=prop_var, line_dash="dash", line_color="green")
366
+
367
+ with df_hold_container:
368
+ df_hold_container = st.empty()
369
+ format_dict = {'10%': '{:.2f}', 'Mean_Outcome': '{:.2f}','90%': '{:.2f}', 'beat_prop': '{:.2%}','implied_odds': '{:.2%}'}
370
+ st.dataframe(final_outcomes.style.format(format_dict), use_container_width = True)
371
+
372
+ with info_hold_container:
373
+ st.info('The Y-axis is the percent of times in simulations that the player reaches certain thresholds, while the X-axis is the threshold to be met. The Green dotted line is the prop you entered. You can hover over any spot and see the percent to reach that mark.')
374
+
375
+ with plot_hold_container:
376
+ st.dataframe(player_outcomes, use_container_width = True)
377
+ plot_hold_container = st.empty()
378
+ st.plotly_chart(fig, use_container_width=True)
379
+
380
+ with tab5:
381
+ st.info(t_stamp)
382
+ st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
383
+ if st.button("Reset Data/Load Data", key='reset5'):
384
+ # Clear values from *all* all in-memory and on-disk data caches:
385
+ # i.e. clear values from both square and cube
386
+ st.cache_data.clear()
387
+ t_stamp = load_time()
388
+ col1, col2 = st.columns([1, 5])
389
+
390
+ with col2:
391
+ df_hold_container = st.empty()
392
+ info_hold_container = st.empty()
393
+ plot_hold_container = st.empty()
394
+ export_container = st.empty()
395
+
396
+ with col1:
397
+ prop_type_var = st.selectbox('Select prop category', options = ['Strikeouts (Pitchers)', 'Total Outs (Pitchers)'])
398
+
399
+ if st.button('Simulate Prop Category'):
400
+ with col2:
401
+
402
+ with df_hold_container.container():
403
+
404
+ if prop_type_var == "Strikeouts (Pitchers)":
405
+ player_df = pitcher_frame_hold
406
+ prop_df = load_strikeout_props()
407
+ prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
408
+ prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
409
+ prop_df = prop_df.loc[prop_df['Prop'] != 0]
410
+ prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
411
+ prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
412
+ df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
413
+ elif prop_type_var == "Total Outs (Pitchers)":
414
+ player_df = pitcher_frame_hold
415
+ prop_df = load_total_outs_props()
416
+ prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
417
+ prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
418
+ prop_df = prop_df.loc[prop_df['Prop'] != 0]
419
+ prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
420
+ prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
421
+ df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
422
+ elif prop_type_var == "Total Bases (Hitters)":
423
+ player_df = hitter_frame_hold
424
+ prop_df = load_total_bases_props()
425
+ prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
426
+ prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
427
+ prop_df = prop_df.loc[prop_df['Prop'] != 0]
428
+ prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
429
+ prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
430
+ df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
431
+ elif prop_type_var == "Stolen Bases (Hitters)":
432
+ player_df = hitter_frame_hold
433
+ prop_df = load_stolen_base_props()
434
+ prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
435
+ prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
436
+ prop_df = prop_df.loc[prop_df['Prop'] != 0]
437
+ prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
438
+ prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
439
+ df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
440
+
441
+ prop_dict = dict(zip(df.Player, df.Prop))
442
+ over_dict = dict(zip(df.Player, df.Over))
443
+ under_dict = dict(zip(df.Player, df.Under))
444
+
445
+ total_sims = 1000
446
+
447
+ df.replace("", 0, inplace=True)
448
+
449
+ if prop_type_var == "Strikeouts (Pitchers)":
450
+ df['Median'] = df['Ks']
451
+ elif prop_type_var == "Total Outs (Pitchers)":
452
+ df['Median'] = df['Outs']
453
+ elif prop_type_var == "Total Bases (Hitters)":
454
+ df['Median'] = df['Total Bases']
455
+ elif prop_type_var == "Stolen Bases (Hitters)":
456
+ df['Median'] = df['Stolen Bases (Hitters)']
457
+
458
+ flex_file = df
459
+ if prop_type_var == 'Strikeouts (Pitchers)':
460
+ flex_file['Floor'] = flex_file['Median'] * .20
461
+ flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80)
462
+ flex_file['STD'] = flex_file['Median'] / 4
463
+ flex_file['Prop'] = flex_file['Player'].map(prop_dict)
464
+ flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
465
+
466
+ elif prop_type_var == 'Total Outs (Pitchers)':
467
+ flex_file['Floor'] = flex_file['Median'] * .20
468
+ flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80)
469
+ flex_file['STD'] = flex_file['Median'] / 4
470
+ flex_file['Prop'] = flex_file['Player'].map(prop_dict)
471
+ flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
472
+
473
+ elif prop_type_var == 'Total Bases (Hitters)':
474
+ flex_file['Floor'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] * .20, 0)
475
+ flex_file['Ceiling'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] + (flex_file['Median'] * .80), flex_file['Median'] * 4)
476
+ flex_file['STD'] = flex_file['Median'] / 1.5
477
+ flex_file['Prop'] = flex_file['Player'].map(prop_dict)
478
+ flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
479
+
480
+ elif prop_type_var == 'Stolen Bases (Hitters)':
481
+ flex_file['Floor'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] * .20, 0)
482
+ flex_file['Ceiling'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] + (flex_file['Median'] * .80), flex_file['Median'] * 4)
483
+ flex_file['STD'] = flex_file['Median'] / 1.5
484
+ flex_file['Prop'] = flex_file['Player'].map(prop_dict)
485
+ flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
486
+
487
+ hold_file = flex_file
488
+ overall_file = flex_file
489
+ prop_file = flex_file
490
+
491
+ overall_players = overall_file[['Player']]
492
+
493
+ for x in range(0,total_sims):
494
+ prop_file[x] = prop_file['Prop']
495
+
496
+ prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
497
+
498
+ for x in range(0,total_sims):
499
+ overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
500
+
501
+ overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
502
+
503
+ players_only = hold_file[['Player']]
504
+
505
+ player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
506
+
507
+ prop_check = (overall_file - prop_file)
508
+
509
+ players_only['Mean_Outcome'] = overall_file.mean(axis=1)
510
+ players_only['10%'] = overall_file.quantile(0.1, axis=1)
511
+ players_only['90%'] = overall_file.quantile(0.9, axis=1)
512
+ players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
513
+ players_only['Imp Over'] = players_only['Player'].map(over_dict)
514
+ players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
515
+ players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
516
+ players_only['Imp Under'] = players_only['Player'].map(under_dict)
517
+ players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
518
+ players_only['Prop'] = players_only['Player'].map(prop_dict)
519
+ players_only['Prop_avg'] = players_only['Prop'].mean() / 100
520
+ players_only['prop_threshold'] = .10
521
+ players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
522
+ players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
523
+ players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
524
+ players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
525
+ players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
526
+ players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
527
+ players_only['Edge'] = players_only['Bet_check']
528
+
529
+ players_only['Player'] = hold_file[['Player']]
530
+
531
+ final_outcomes = players_only[['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
532
+
533
+ final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
534
+
535
+ final_outcomes = final_outcomes.set_index('Player')
536
+
537
+ with df_hold_container:
538
+ df_hold_container = st.empty()
539
+ st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
540
+ with export_container:
541
+ export_container = st.empty()
542
+ st.download_button(
543
+ label="Export Projections",
544
+ data=convert_df_to_csv(final_outcomes),
545
+ file_name='MLB_DFS_prop_proj.csv',
546
+ mime='text/csv',
547
+ key='prop_proj',
548
+ )
549
+