Spaces:
Runtime error
Runtime error
File size: 12,863 Bytes
666100e 991f67f 666100e 70a1dd5 666100e 0402531 70a1dd5 bc57db2 0402531 bc57db2 0402531 12c5542 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import gc
import plotly.express as px
import plotly.io as pio
import pymongo
import certifi
ca = certifi.where()
@st.cache_resource
def init_conn():
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
credentials = {
"type": "service_account",
"project_id": "model-sheets-connect",
"private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
"client_email": "[email protected]",
"client_id": "100369174533302798535",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}
uri = "mongodb+srv://multichem:[email protected]/?retryWrites=true&w=majority&appName=TestCluster"
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
db = client["testing_db"]
gc_con = gspread.service_account_from_dict(credentials, scope)
return gc_con, client, db
gcservice_account, client, db = init_conn()
MLB_Data = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=340831852'
percentages_format = {'Exposure': '{:.2%}'}
@st.cache_resource(ttl = 599)
def init_baselines():
sh = gcservice_account.open_by_url(MLB_Data)
collection = db["DK_MLB_seed_frame"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
DK_seed = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'Team', 'Team_count', 'salary', 'proj']]
collection = db["FD_MLB_seed_frame"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
FD_seed = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'Team', 'Team_count', 'salary', 'proj']]
worksheet = sh.worksheet('DK_Projections')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
dk_raw = load_display.dropna(subset=['Median'])
worksheet = sh.worksheet('FD_Projections')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
fd_raw = load_display.dropna(subset=['Median'])
return DK_seed, FD_seed, dk_raw, fd_raw
DK_seed, FD_seed, dk_raw, fd_raw = init_baselines()
tab1, tab2 = ['Data Export', 'Contest Sims']
with tab1:
col1, col2 = st.columns([1, 7])
with col1:
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
DK_seed, FD_seed, dk_raw, fd_raw = init_baselines()
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
if site_var1 == 'Draftkings':
raw_baselines = dk_raw
elif site_var1 == 'Fanduel':
raw_baselines = fd_raw
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
team_var2 = st.multiselect('Which teams do you want?', options = DK_seed['Team'].unique())
elif team_var1 == 'Full Players':
team_var2 = DK_seed.Team.values.tolist()
with col2:
if site_var1 == 'Draftkings':
DK_seed_parse = DK_seed[DK_seed['Team'].isin[team_var2]]
st.session_state.data_export_display = DK_seed_parse.head(1000)
st.session_state.data_export = DK_seed_parse
st.session_state.data_export_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.data_export.iloc[:,0:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
st.session_state.data_export_freq['Freq'] = st.session_state.data_export_freq['Freq'].astype(int)
st.session_state.data_export_freq['Exposure'] = st.session_state.data_export_freq['Freq']/(500000)
if 'data_export' in st.session_state:
st.download_button(
label="Export optimals set",
data=st.session_state.data_export.to_csv().encode('utf-8'),
file_name='MLB_optimals_export.csv',
mime='text/csv',
)
st.dataframe(st.session_state.data_export_display.style.format(precision=2), height=500, use_container_width=True)
st.dataframe(st.session_state.data_export_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
elif site_var1 == 'Fanduel':
FD_seed_parse = FD_seed[FD_seed['Team'].isin[team_var2]]
st.session_state.data_export_display = FD_seed_parse.head(1000)
st.session_state.data_export = FD_seed_parse
st.session_state.data_export_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.data_export.iloc[:,0:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
st.session_state.data_export_freq['Freq'] = st.session_state.data_export_freq['Freq'].astype(int)
st.session_state.data_export_freq['Exposure'] = st.session_state.data_export_freq['Freq']/(500000)
if 'data_export' in st.session_state:
st.download_button(
label="Export optimals set",
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
file_name='MLB_optimals_export.csv',
mime='text/csv',
)
st.dataframe(st.session_state.data_export_display.style.format(precision=2), height=500, use_container_width=True)
st.dataframe(st.session_state.data_export_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
with tab2:
col1, col2 = st.columns([1, 7])
with col1:
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
DK_seed, FD_seed, dk_raw, fd_raw = init_baselines()
# slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
# site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
# if site_var1 == 'Draftkings':
# raw_baselines = dk_raw
# elif site_var1 == 'Fanduel':
# raw_baselines = fd_raw
# contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large'))
# if contest_var1 == 'Small':
# Contest_Size = 1000
# elif contest_var1 == 'Medium':
# Contest_Size = 5000
# elif contest_var1 == 'Large':
# Contest_Size = 10000
# elif contest_var1 == 'Massive':
# Contest_Size = 100000
# strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Not Very', 'Average', 'Very'))
# if strength_var1 == 'Not Very':
# sharp_split = [400000,100000]
# elif strength_var1 == 'Average':
# sharp_split = [500000,200000]
# elif strength_var1 == 'Very':
# sharp_split = [500000,300000]
with col2:
# if site_var1 == 'Draftkings':
# st.session_state.Sim_Winner_Frame = DK_seed.head(Contest_Size)
# st.session_state.Sim_Winner_Display = DK_seed.head(Contest_Size)
# st.session_state.Sim_Winner_Export = DK_seed
# st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:9].values, return_counts=True)),
# columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
# st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
# st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(Contest_Size)
# if 'Sim_Winner_Export' in st.session_state:
# st.download_button(
# label="Export 500k optimals",
# data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
# file_name='MLB_consim_export.csv',
# mime='text/csv',
# )
# st.dataframe(st.session_state.Sim_Winner_Display.style.format(precision=2), height=500, use_container_width=True)
# st.dataframe(st.session_state.player_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
# elif site_var1 == 'Fanduel':
# st.session_state.Sim_Winner_Frame = FD_seed.head(Contest_Size)
# st.session_state.Sim_Winner_Display = FD_seed.head(Contest_Size)
# st.session_state.Sim_Winner_Export = FD_seed
# st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:8].values, return_counts=True)),
# columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
# st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
# st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(Contest_Size)
# if 'Sim_Winner_Export' in st.session_state:
# st.download_button(
# label="Export 500k optimals",
# data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
# file_name='MLB_consim_export.csv',
# mime='text/csv',
# )
# st.dataframe(st.session_state.Sim_Winner_Display.style.format(precision=2), height=500, use_container_width=True)
# st.dataframe(st.session_state.player_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True) |