File size: 7,756 Bytes
666100e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fbe290
666100e
 
 
 
 
 
 
 
0402531
666100e
0402531
 
 
 
 
bc57db2
 
 
 
 
 
 
 
 
 
 
 
 
 
0402531
bc57db2
0402531
666100e
bc57db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0657ac9
 
bc57db2
 
 
 
 
 
 
666100e
bc57db2
 
076c574
e805b6a
ce410e5
 
 
6fbe290
ce410e5
6fbe290
 
bc57db2
076c574
e805b6a
ce410e5
 
 
6fbe290
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]
        
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import gc
import plotly.express as px
import plotly.io as pio
import pymongo
import certifi
ca = certifi.where()

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "model-sheets-connect",
          "private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
          "client_email": "[email protected]",
          "client_id": "100369174533302798535",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
        }
        uri = "mongodb+srv://multichem:[email protected]/?retryWrites=true&w=majority&appName=TestCluster"
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
        db = client["testing_db"]

        gc_con = gspread.service_account_from_dict(credentials, scope)
      
        return gc_con, client, db

gcservice_account, client, db = init_conn()

MLB_Data = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=340831852'

percentages_format = {'Freq': '{:.2%}'}

@st.cache_resource(ttl = 599)
def init_baselines():
    sh = gcservice_account.open_by_url(MLB_Data)
    collection = db["DK_MLB_seed_frame"] 
    cursor = collection.find()
    
    raw_display = pd.DataFrame(list(cursor))
    DK_seed = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'Team_count', 'salary', 'proj']]

    collection = db["FD_MLB_seed_frame"] 
    cursor = collection.find()
    
    raw_display = pd.DataFrame(list(cursor))
    FD_seed = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'Team_count', 'salary', 'proj']]
    
    worksheet = sh.worksheet('DK_Projections')
    load_display = pd.DataFrame(worksheet.get_all_records())
    load_display.replace('', np.nan, inplace=True)
    
    dk_raw = load_display.dropna(subset=['Median'])
    
    worksheet = sh.worksheet('FD_Projections')
    load_display = pd.DataFrame(worksheet.get_all_records())
    load_display.replace('', np.nan, inplace=True)
    
    fd_raw = load_display.dropna(subset=['Median'])

    return DK_seed, FD_seed, dk_raw, fd_raw

DK_seed, FD_seed, dk_raw, fd_raw = init_baselines()


col1, col2 = st.columns([1, 7])
with col1:
    if st.button("Load/Reset Data", key='reset1'):
          st.cache_data.clear()
          for key in st.session_state.keys():
              del st.session_state[key]
          DK_seed, FD_seed, dk_raw, fd_raw = init_baselines()
          
    slate_var1 = st.radio("Which data are you loading?", ('Main Slate'))
    site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
    if site_var1 == 'Draftkings':
        raw_baselines = dk_raw
    elif site_var1 == 'Fanduel':
        raw_baselines = fd_raw
        
    contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large'))
    if contest_var1 == 'Small':
        Contest_Size = 1000
    elif contest_var1 == 'Medium':
        Contest_Size = 5000
    elif contest_var1 == 'Large':
        Contest_Size = 10000
    elif contest_var1 == 'Massive':
        Contest_Size = 100000
    strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Not Very', 'Average', 'Very'))
    if strength_var1 == 'Not Very':
        sharp_split = [400000,100000] 
    elif strength_var1 == 'Average':
        sharp_split = [500000,200000]
    elif strength_var1 == 'Very':
        sharp_split = [500000,300000]

with col2:
    if site_var1 == 'Draftkings':
        st.session_state.Sim_Winner_Frame = DK_seed.head(Contest_Size)
        st.session_state.Sim_Winner_Display = DK_seed.head(Contest_Size)
        st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:9].values, return_counts=True)),
                                    columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
        st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
        st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(Contest_Size)

        st.dataframe(st.session_state.Sim_Winner_Display.style.format(precision=2), height=500, use_container_width=True)
        st.dataframe(st.session_state.player_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
    elif site_var1 == 'Fanduel':
        st.session_state.Sim_Winner_Frame = FD_seed.head(Contest_Size)
        st.session_state.Sim_Winner_Display = FD_seed.head(Contest_Size)
        st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:8].values, return_counts=True)),
                                    columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
        st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
        st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(Contest_Size)
        st.dataframe(st.session_state.Sim_Winner_Display.style.format(precision=2), height=500, use_container_width=True)
        st.dataframe(st.session_state.player_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)