Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -174,51 +174,39 @@ with tab1:
|
|
174 |
if st.button("Load Data", key='load_data'):
|
175 |
if site_var1 == 'Draftkings':
|
176 |
if 'working_seed' in st.session_state:
|
177 |
-
|
178 |
-
|
179 |
-
np.isin(st.session_state.working_seed[:, column_indices[0]], team_var2),
|
180 |
-
np.isin(st.session_state.working_seed[:, column_indices[1]], stack_var2)
|
181 |
-
)
|
182 |
-
st.session_state.working_seed = st.session_state.working_seed[filter_mask]
|
183 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
184 |
if 'data_export_display' in st.session_state:
|
|
|
185 |
st.session_state.data_export_freq = pd.DataFrame(calculate_DK_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
|
186 |
st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
|
187 |
else:
|
188 |
st.session_state.working_seed = DK_seed.copy()
|
189 |
-
|
190 |
-
|
191 |
-
np.isin(st.session_state.working_seed[:, column_indices[0]], team_var2),
|
192 |
-
np.isin(st.session_state.working_seed[:, column_indices[1]], stack_var2)
|
193 |
-
)
|
194 |
-
st.session_state.working_seed = st.session_state.working_seed[filter_mask]
|
195 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
196 |
if 'data_export_display' in st.session_state:
|
|
|
197 |
st.session_state.data_export_freq = pd.DataFrame(calculate_DK_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
|
198 |
st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
|
199 |
|
200 |
elif site_var1 == 'Fanduel':
|
201 |
if 'working_seed' in st.session_state:
|
202 |
-
|
203 |
-
|
204 |
-
np.isin(st.session_state.working_seed[:, column_indices[0]], team_var2),
|
205 |
-
np.isin(st.session_state.working_seed[:, column_indices[1]], stack_var2)
|
206 |
-
)
|
207 |
-
st.session_state.working_seed = st.session_state.working_seed[filter_mask]
|
208 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
209 |
if 'data_export_display' in st.session_state:
|
|
|
210 |
st.session_state.data_export_freq = pd.DataFrame(calculate_FD_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
|
211 |
st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
|
212 |
else:
|
213 |
st.session_state.working_seed = FD_seed.copy()
|
214 |
-
|
215 |
-
|
216 |
-
np.isin(st.session_state.working_seed[:, column_indices[0]], team_var2),
|
217 |
-
np.isin(st.session_state.working_seed[:, column_indices[1]], stack_var2)
|
218 |
-
)
|
219 |
-
st.session_state.working_seed = st.session_state.working_seed[filter_mask]
|
220 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
221 |
if 'data_export_display' in st.session_state:
|
|
|
222 |
st.session_state.data_export_freq = pd.DataFrame(calculate_FD_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
|
223 |
st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
|
224 |
|
@@ -255,15 +243,15 @@ with tab2:
|
|
255 |
raw_baselines = fd_raw
|
256 |
column_names = fd_columns
|
257 |
|
258 |
-
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', '
|
259 |
if contest_var1 == 'Small':
|
260 |
Contest_Size = 1000
|
261 |
elif contest_var1 == 'Medium':
|
262 |
Contest_Size = 5000
|
263 |
elif contest_var1 == 'Large':
|
264 |
Contest_Size = 10000
|
265 |
-
elif contest_var1 == '
|
266 |
-
Contest_Size =
|
267 |
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Average', 'Not Very'))
|
268 |
if strength_var1 == 'Not Very':
|
269 |
sharp_split = 500000
|
|
|
174 |
if st.button("Load Data", key='load_data'):
|
175 |
if site_var1 == 'Draftkings':
|
176 |
if 'working_seed' in st.session_state:
|
177 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
|
178 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
|
|
|
|
|
|
|
|
|
179 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
180 |
if 'data_export_display' in st.session_state:
|
181 |
+
time.sleep(1)
|
182 |
st.session_state.data_export_freq = pd.DataFrame(calculate_DK_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
|
183 |
st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
|
184 |
else:
|
185 |
st.session_state.working_seed = DK_seed.copy()
|
186 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
|
187 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
|
|
|
|
|
|
|
|
|
188 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
189 |
if 'data_export_display' in st.session_state:
|
190 |
+
time.sleep(1)
|
191 |
st.session_state.data_export_freq = pd.DataFrame(calculate_DK_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
|
192 |
st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
|
193 |
|
194 |
elif site_var1 == 'Fanduel':
|
195 |
if 'working_seed' in st.session_state:
|
196 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
197 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
|
|
|
|
|
|
|
|
198 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
199 |
if 'data_export_display' in st.session_state:
|
200 |
+
time.sleep(1)
|
201 |
st.session_state.data_export_freq = pd.DataFrame(calculate_FD_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
|
202 |
st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
|
203 |
else:
|
204 |
st.session_state.working_seed = FD_seed.copy()
|
205 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
206 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
|
|
|
|
|
|
|
|
207 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
208 |
if 'data_export_display' in st.session_state:
|
209 |
+
time.sleep(1)
|
210 |
st.session_state.data_export_freq = pd.DataFrame(calculate_FD_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
|
211 |
st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
|
212 |
|
|
|
243 |
raw_baselines = fd_raw
|
244 |
column_names = fd_columns
|
245 |
|
246 |
+
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
247 |
if contest_var1 == 'Small':
|
248 |
Contest_Size = 1000
|
249 |
elif contest_var1 == 'Medium':
|
250 |
Contest_Size = 5000
|
251 |
elif contest_var1 == 'Large':
|
252 |
Contest_Size = 10000
|
253 |
+
elif contest_var1 == 'Custom':
|
254 |
+
Contest_Size = st.number_input("Insert contest size", value=None, placeholder="Type a number under 10,000...")
|
255 |
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Average', 'Not Very'))
|
256 |
if strength_var1 == 'Not Very':
|
257 |
sharp_split = 500000
|