Multichem commited on
Commit
1eaa246
·
verified ·
1 Parent(s): 41fedb7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -27
app.py CHANGED
@@ -174,51 +174,39 @@ with tab1:
174
  if st.button("Load Data", key='load_data'):
175
  if site_var1 == 'Draftkings':
176
  if 'working_seed' in st.session_state:
177
- column_indices = [12, 13]
178
- filter_mask = np.logical_or(
179
- np.isin(st.session_state.working_seed[:, column_indices[0]], team_var2),
180
- np.isin(st.session_state.working_seed[:, column_indices[1]], stack_var2)
181
- )
182
- st.session_state.working_seed = st.session_state.working_seed[filter_mask]
183
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
184
  if 'data_export_display' in st.session_state:
 
185
  st.session_state.data_export_freq = pd.DataFrame(calculate_DK_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
186
  st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
187
  else:
188
  st.session_state.working_seed = DK_seed.copy()
189
- column_indices = [12, 13]
190
- filter_mask = np.logical_or(
191
- np.isin(st.session_state.working_seed[:, column_indices[0]], team_var2),
192
- np.isin(st.session_state.working_seed[:, column_indices[1]], stack_var2)
193
- )
194
- st.session_state.working_seed = st.session_state.working_seed[filter_mask]
195
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
196
  if 'data_export_display' in st.session_state:
 
197
  st.session_state.data_export_freq = pd.DataFrame(calculate_DK_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
198
  st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
199
 
200
  elif site_var1 == 'Fanduel':
201
  if 'working_seed' in st.session_state:
202
- column_indices = [11, 12]
203
- filter_mask = np.logical_or(
204
- np.isin(st.session_state.working_seed[:, column_indices[0]], team_var2),
205
- np.isin(st.session_state.working_seed[:, column_indices[1]], stack_var2)
206
- )
207
- st.session_state.working_seed = st.session_state.working_seed[filter_mask]
208
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
209
  if 'data_export_display' in st.session_state:
 
210
  st.session_state.data_export_freq = pd.DataFrame(calculate_FD_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
211
  st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
212
  else:
213
  st.session_state.working_seed = FD_seed.copy()
214
- column_indices = [11, 12]
215
- filter_mask = np.logical_or(
216
- np.isin(st.session_state.working_seed[:, column_indices[0]], team_var2),
217
- np.isin(st.session_state.working_seed[:, column_indices[1]], stack_var2)
218
- )
219
- st.session_state.working_seed = st.session_state.working_seed[filter_mask]
220
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
221
  if 'data_export_display' in st.session_state:
 
222
  st.session_state.data_export_freq = pd.DataFrame(calculate_FD_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
223
  st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
224
 
@@ -255,15 +243,15 @@ with tab2:
255
  raw_baselines = fd_raw
256
  column_names = fd_columns
257
 
258
- contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Massive'))
259
  if contest_var1 == 'Small':
260
  Contest_Size = 1000
261
  elif contest_var1 == 'Medium':
262
  Contest_Size = 5000
263
  elif contest_var1 == 'Large':
264
  Contest_Size = 10000
265
- elif contest_var1 == 'Massive':
266
- Contest_Size = 100000
267
  strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Average', 'Not Very'))
268
  if strength_var1 == 'Not Very':
269
  sharp_split = 500000
 
174
  if st.button("Load Data", key='load_data'):
175
  if site_var1 == 'Draftkings':
176
  if 'working_seed' in st.session_state:
177
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
178
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
 
 
 
 
179
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
180
  if 'data_export_display' in st.session_state:
181
+ time.sleep(1)
182
  st.session_state.data_export_freq = pd.DataFrame(calculate_DK_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
183
  st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
184
  else:
185
  st.session_state.working_seed = DK_seed.copy()
186
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
187
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
 
 
 
 
188
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
189
  if 'data_export_display' in st.session_state:
190
+ time.sleep(1)
191
  st.session_state.data_export_freq = pd.DataFrame(calculate_DK_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
192
  st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
193
 
194
  elif site_var1 == 'Fanduel':
195
  if 'working_seed' in st.session_state:
196
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
197
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
 
 
 
 
198
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
199
  if 'data_export_display' in st.session_state:
200
+ time.sleep(1)
201
  st.session_state.data_export_freq = pd.DataFrame(calculate_FD_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
202
  st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
203
  else:
204
  st.session_state.working_seed = FD_seed.copy()
205
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
206
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
 
 
 
 
207
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
208
  if 'data_export_display' in st.session_state:
209
+ time.sleep(1)
210
  st.session_state.data_export_freq = pd.DataFrame(calculate_FD_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
211
  st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
212
 
 
243
  raw_baselines = fd_raw
244
  column_names = fd_columns
245
 
246
+ contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
247
  if contest_var1 == 'Small':
248
  Contest_Size = 1000
249
  elif contest_var1 == 'Medium':
250
  Contest_Size = 5000
251
  elif contest_var1 == 'Large':
252
  Contest_Size = 10000
253
+ elif contest_var1 == 'Custom':
254
+ Contest_Size = st.number_input("Insert contest size", value=None, placeholder="Type a number under 10,000...")
255
  strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Average', 'Not Very'))
256
  if strength_var1 == 'Not Very':
257
  sharp_split = 500000