Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -51,6 +51,7 @@ def init_conn():
|
|
51 |
gcservice_account, client, db, DK_seed, FD_seed, MLB_Data = init_conn()
|
52 |
|
53 |
percentages_format = {'Exposure': '{:.2%}'}
|
|
|
54 |
dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']
|
55 |
fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']
|
56 |
|
@@ -358,19 +359,42 @@ with tab2:
|
|
358 |
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
|
359 |
st.session_state.player_freq['Position'] = st.session_state.player_freq['Player'].map(maps_dict['Pos_map'])
|
360 |
st.session_state.player_freq['Salary'] = st.session_state.player_freq['Player'].map(maps_dict['Salary_map'])
|
361 |
-
st.session_state.player_freq['Proj Own'] = st.session_state.player_freq['Player'].map(maps_dict['
|
362 |
st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(1000)
|
363 |
st.session_state.player_freq['Edge'] = st.session_state.player_freq['Exposure'] - st.session_state.player_freq['Proj Own']
|
364 |
st.session_state.player_freq['Team'] = st.session_state.player_freq['Player'].map(maps_dict['Team_map'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
|
366 |
with st.container():
|
367 |
-
tab1, tab2, tab3, tab4
|
368 |
with tab1:
|
369 |
if 'player_freq' in st.session_state:
|
370 |
-
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
371 |
st.download_button(
|
372 |
label="Export Exposures",
|
373 |
data=st.session_state.player_freq.to_csv().encode('utf-8'),
|
374 |
file_name='player_freq_export.csv',
|
375 |
mime='text/csv',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
376 |
)
|
|
|
51 |
gcservice_account, client, db, DK_seed, FD_seed, MLB_Data = init_conn()
|
52 |
|
53 |
percentages_format = {'Exposure': '{:.2%}'}
|
54 |
+
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}'}
|
55 |
dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']
|
56 |
fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']
|
57 |
|
|
|
359 |
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
|
360 |
st.session_state.player_freq['Position'] = st.session_state.player_freq['Player'].map(maps_dict['Pos_map'])
|
361 |
st.session_state.player_freq['Salary'] = st.session_state.player_freq['Player'].map(maps_dict['Salary_map'])
|
362 |
+
st.session_state.player_freq['Proj Own'] = st.session_state.player_freq['Player'].map(maps_dict['Own_map']) / 100
|
363 |
st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(1000)
|
364 |
st.session_state.player_freq['Edge'] = st.session_state.player_freq['Exposure'] - st.session_state.player_freq['Proj Own']
|
365 |
st.session_state.player_freq['Team'] = st.session_state.player_freq['Player'].map(maps_dict['Team_map'])
|
366 |
+
|
367 |
+
if sim_site_var1 == 'Draftkings':
|
368 |
+
st.session_state.sp_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:2].values, return_counts=True)),
|
369 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
370 |
+
elif sim_site_var1 == 'Draftkings':
|
371 |
+
st.session_state.sp_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:1].values, return_counts=True)),
|
372 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
373 |
+
st.session_state.sp_freq['Freq'] = st.session_state.sp_freq['Freq'].astype(int)
|
374 |
+
st.session_state.sp_freq['Position'] = st.session_state.sp_freq['Player'].map(maps_dict['Pos_map'])
|
375 |
+
st.session_state.sp_freq['Salary'] = st.session_state.sp_freq['Player'].map(maps_dict['Salary_map'])
|
376 |
+
st.session_state.sp_freq['Proj Own'] = st.session_state.sp_freq['Player'].map(maps_dict['Own_map']) / 100
|
377 |
+
st.session_state.sp_freq['Exposure'] = st.session_state.sp_freq['Freq']/(1000)
|
378 |
+
st.session_state.sp_freq['Edge'] = st.session_state.sp_freq['Exposure'] - st.session_state.sp_freq['Proj Own']
|
379 |
+
st.session_state.sp_freq['Team'] = st.session_state.sp_freq['Player'].map(maps_dict['Team_map'])
|
380 |
|
381 |
with st.container():
|
382 |
+
tab1, tab2, tab3, tab4 = st.tabs(['Overall Exposures', 'SP Exposures', 'Team Exposures', 'Stack Size Exposures'])
|
383 |
with tab1:
|
384 |
if 'player_freq' in st.session_state:
|
385 |
+
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
386 |
st.download_button(
|
387 |
label="Export Exposures",
|
388 |
data=st.session_state.player_freq.to_csv().encode('utf-8'),
|
389 |
file_name='player_freq_export.csv',
|
390 |
mime='text/csv',
|
391 |
+
)
|
392 |
+
with tab2:
|
393 |
+
if 'sp_freq' in st.session_state:
|
394 |
+
st.dataframe(st.session_state.sp_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
395 |
+
st.download_button(
|
396 |
+
label="Export Exposures",
|
397 |
+
data=st.session_state.sp_freq.to_csv().encode('utf-8'),
|
398 |
+
file_name='player_freq_export.csv',
|
399 |
+
mime='text/csv',
|
400 |
)
|