Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -86,7 +86,7 @@ with col1:
|
|
86 |
del st.session_state[key]
|
87 |
DK_seed, FD_seed, dk_raw, fd_raw = init_baselines()
|
88 |
|
89 |
-
slate_var1 = st.radio("Which data are you loading?", ('Main Slate'))
|
90 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
91 |
if site_var1 == 'Draftkings':
|
92 |
raw_baselines = dk_raw
|
@@ -114,19 +114,36 @@ with col2:
|
|
114 |
if site_var1 == 'Draftkings':
|
115 |
st.session_state.Sim_Winner_Frame = DK_seed.head(Contest_Size)
|
116 |
st.session_state.Sim_Winner_Display = DK_seed.head(Contest_Size)
|
|
|
117 |
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:9].values, return_counts=True)),
|
118 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
119 |
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
|
120 |
st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(Contest_Size)
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
st.dataframe(st.session_state.Sim_Winner_Display.style.format(precision=2), height=500, use_container_width=True)
|
123 |
st.dataframe(st.session_state.player_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
|
124 |
elif site_var1 == 'Fanduel':
|
125 |
st.session_state.Sim_Winner_Frame = FD_seed.head(Contest_Size)
|
126 |
st.session_state.Sim_Winner_Display = FD_seed.head(Contest_Size)
|
|
|
127 |
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:8].values, return_counts=True)),
|
128 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
129 |
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
|
130 |
st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(Contest_Size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
st.dataframe(st.session_state.Sim_Winner_Display.style.format(precision=2), height=500, use_container_width=True)
|
132 |
st.dataframe(st.session_state.player_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
|
|
|
86 |
del st.session_state[key]
|
87 |
DK_seed, FD_seed, dk_raw, fd_raw = init_baselines()
|
88 |
|
89 |
+
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
|
90 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
91 |
if site_var1 == 'Draftkings':
|
92 |
raw_baselines = dk_raw
|
|
|
114 |
if site_var1 == 'Draftkings':
|
115 |
st.session_state.Sim_Winner_Frame = DK_seed.head(Contest_Size)
|
116 |
st.session_state.Sim_Winner_Display = DK_seed.head(Contest_Size)
|
117 |
+
st.session_state.Sim_Winner_Export = DK_seed
|
118 |
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:9].values, return_counts=True)),
|
119 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
120 |
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
|
121 |
st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(Contest_Size)
|
122 |
+
|
123 |
+
if 'Sim_Winner_Export' in st.session_state:
|
124 |
+
st.download_button(
|
125 |
+
label="Export 500k optimals",
|
126 |
+
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
|
127 |
+
file_name='MLB_consim_export.csv',
|
128 |
+
mime='text/csv',
|
129 |
+
)
|
130 |
st.dataframe(st.session_state.Sim_Winner_Display.style.format(precision=2), height=500, use_container_width=True)
|
131 |
st.dataframe(st.session_state.player_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
|
132 |
elif site_var1 == 'Fanduel':
|
133 |
st.session_state.Sim_Winner_Frame = FD_seed.head(Contest_Size)
|
134 |
st.session_state.Sim_Winner_Display = FD_seed.head(Contest_Size)
|
135 |
+
st.session_state.Sim_Winner_Export = FD_seed
|
136 |
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:8].values, return_counts=True)),
|
137 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
138 |
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
|
139 |
st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(Contest_Size)
|
140 |
+
|
141 |
+
if 'Sim_Winner_Export' in st.session_state:
|
142 |
+
st.download_button(
|
143 |
+
label="Export 500k optimals",
|
144 |
+
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
|
145 |
+
file_name='MLB_consim_export.csv',
|
146 |
+
mime='text/csv',
|
147 |
+
)
|
148 |
st.dataframe(st.session_state.Sim_Winner_Display.style.format(precision=2), height=500, use_container_width=True)
|
149 |
st.dataframe(st.session_state.player_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
|