Multichem commited on
Commit
3d5979b
·
verified ·
1 Parent(s): 2864e61

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -20
app.py CHANGED
@@ -30,14 +30,14 @@ def init_conn():
30
  cursor = collection.find()
31
 
32
  raw_display = pd.DataFrame(list(cursor))
33
- raw_display = raw_display[['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']]
34
  DK_seed = raw_display.to_numpy()
35
 
36
  collection = db["FD_MLB_seed_frame"]
37
  cursor = collection.find()
38
 
39
  raw_display = pd.DataFrame(list(cursor))
40
- raw_display = raw_display[['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']]
41
  FD_seed = raw_display.to_numpy()
42
 
43
  MLB_Data = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=340831852'
@@ -51,8 +51,8 @@ def init_conn():
51
  gcservice_account, client, db, DK_seed, FD_seed, MLB_Data = init_conn()
52
 
53
  percentages_format = {'Exposure': '{:.2%}'}
54
- dk_columns = [['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']]
55
- fd_columns = [['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']]
56
 
57
  @st.cache_data(ttl = 60)
58
  def init_baselines():
@@ -78,12 +78,19 @@ def convert_df(array):
78
  return array.to_csv().encode('utf-8')
79
 
80
  @st.cache_data
81
- def calculate_value_frequencies(np_array):
82
- unique, counts = np.unique(np_array, return_counts=True)
83
  frequencies = counts / len(np_array) # Normalize by the number of rows
84
  combined_array = np.column_stack((unique, frequencies))
85
  return combined_array
86
 
 
 
 
 
 
 
 
87
  dk_raw, fd_raw = init_baselines()
88
 
89
  tab1, tab2 = st.tabs(['Data Export', 'Contest Sims'])
@@ -134,20 +141,20 @@ with tab1:
134
  if site_var1 == 'Draftkings':
135
 
136
  st.session_state.working_seed = DK_seed.copy()
137
- st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 2], team_var2)]
138
- st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 3], stack_var2)]
139
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
140
 
141
- # st.session_state.data_export_freq = calculate_value_frequencies(st.session_state.data_export)
142
 
143
  elif site_var1 == 'Fanduel':
144
 
145
  st.session_state.working_seed = FD_seed.copy()
146
- st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 2], team_var2)]
147
- st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 3], stack_var2)]
148
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
149
 
150
- # st.session_state.data_export_freq = calculate_value_frequencies(st.session_state.data_export)
151
 
152
  with st.container():
153
  if 'data_export_display' in st.session_state:
@@ -157,14 +164,13 @@ with tab1:
157
  st.dataframe(st.session_state.data_export_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
158
 
159
  if st.button("Prepare data export", key='data_export'):
160
- st.session_state.data_export = st.session_state.working_seed.copy()
161
- if 'data_export' in st.session_state:
162
- st.download_button(
163
- label="Export optimals set",
164
- data=convert_df(st.session_state.data_export),
165
- file_name='MLB_optimals_export.csv',
166
- mime='text/csv',
167
- )
168
 
169
  with tab2:
170
  col1, col2 = st.columns([1, 7])
 
30
  cursor = collection.find()
31
 
32
  raw_display = pd.DataFrame(list(cursor))
33
+ raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']]
34
  DK_seed = raw_display.to_numpy()
35
 
36
  collection = db["FD_MLB_seed_frame"]
37
  cursor = collection.find()
38
 
39
  raw_display = pd.DataFrame(list(cursor))
40
+ raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']]
41
  FD_seed = raw_display.to_numpy()
42
 
43
  MLB_Data = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=340831852'
 
51
  gcservice_account, client, db, DK_seed, FD_seed, MLB_Data = init_conn()
52
 
53
  percentages_format = {'Exposure': '{:.2%}'}
54
+ dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']
55
+ fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']
56
 
57
  @st.cache_data(ttl = 60)
58
  def init_baselines():
 
78
  return array.to_csv().encode('utf-8')
79
 
80
  @st.cache_data
81
+ def calculate_DK_value_frequencies(np_array):
82
+ unique, counts = np.unique(np_array[:9], return_counts=True)
83
  frequencies = counts / len(np_array) # Normalize by the number of rows
84
  combined_array = np.column_stack((unique, frequencies))
85
  return combined_array
86
 
87
+ @st.cache_data
88
+ def calculate_FD_value_frequencies(np_array):
89
+ unique, counts = np.unique(np_array[:8], return_counts=True)
90
+ frequencies = counts / len(np_array) # Normalize by the number of rows
91
+ combined_array = np.column_stack((unique, frequencies))
92
+ return combined_array
93
+
94
  dk_raw, fd_raw = init_baselines()
95
 
96
  tab1, tab2 = st.tabs(['Data Export', 'Contest Sims'])
 
141
  if site_var1 == 'Draftkings':
142
 
143
  st.session_state.working_seed = DK_seed.copy()
144
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
145
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
146
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
147
 
148
+ st.session_state.data_export_freq = calculate_DK_value_frequencies(st.session_state.working_seed)
149
 
150
  elif site_var1 == 'Fanduel':
151
 
152
  st.session_state.working_seed = FD_seed.copy()
153
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
154
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
155
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
156
 
157
+ st.session_state.data_export_freq = calculate_FD_value_frequencies(st.session_state.working_seed)
158
 
159
  with st.container():
160
  if 'data_export_display' in st.session_state:
 
164
  st.dataframe(st.session_state.data_export_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
165
 
166
  if st.button("Prepare data export", key='data_export'):
167
+ data_export = st.session_state.working_seed.copy()
168
+ st.download_button(
169
+ label="Export optimals set",
170
+ data=convert_df(st.session_state.data_export),
171
+ file_name='MLB_optimals_export.csv',
172
+ mime='text/csv',
173
+ )
 
174
 
175
  with tab2:
176
  col1, col2 = st.columns([1, 7])