Multichem commited on
Commit
66fbd43
·
verified ·
1 Parent(s): 0a818cb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -11
app.py CHANGED
@@ -80,10 +80,9 @@ def init_FD_seed_frame():
80
  return FD_seed
81
 
82
  @st.cache_data
83
- def convert_df_from_parquet(df):
84
  # IMPORTANT: Cache the conversion to prevent computation on every rerun
85
- working_file = df.read_parquet()
86
- return working_file.to_csv().encode('utf-8')
87
 
88
  dk_raw, fd_raw = init_baselines()
89
 
@@ -138,9 +137,8 @@ with tab1:
138
  DK_seed_parse = DK_seed_parse[DK_seed_parse['Team_count'].isin(stack_var2)]
139
  data_export_display = DK_seed_parse.head(1000)
140
  st.session_state.data_export_display = data_export_display.copy()
141
- st.session_state.data_export_expo = DK_seed.copy()
142
- st.session_state.data_export = DK_seed.to_parquet()
143
- st.session_state.data_export_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.data_export_expo.iloc[:,0:9].values, return_counts=True)),
144
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
145
  st.session_state.data_export_freq['Freq'] = st.session_state.data_export_freq['Freq'].astype(int)
146
  st.session_state.data_export_freq['Exposure'] = st.session_state.data_export_freq['Freq']/(len(st.session_state.data_export_expo['Team']))
@@ -148,7 +146,7 @@ with tab1:
148
  if 'data_export' in st.session_state:
149
  st.download_button(
150
  label="Export optimals set",
151
- data=convert_df_from_parquet(st.session_state.data_export),
152
  file_name='MLB_optimals_export.csv',
153
  mime='text/csv',
154
  )
@@ -165,9 +163,8 @@ with tab1:
165
  FD_seed_parse = FD_seed_parse[FD_seed_parse['Team_count'].isin(stack_var2)]
166
  data_export_display = FD_seed_parse.head(1000)
167
  st.session_state.data_export_display = data_export_display.copy()
168
- st.session_state.data_export_expo = FD_seed.copy()
169
- st.session_state.data_export = FD_seed.to_parquet()
170
- st.session_state.data_export_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.data_export_expo.iloc[:,0:8].values, return_counts=True)),
171
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
172
  st.session_state.data_export_freq['Freq'] = st.session_state.data_export_freq['Freq'].astype(int)
173
  st.session_state.data_export_freq['Exposure'] = st.session_state.data_export_freq['Freq']/(len(st.session_state.data_export_expo['Team']))
@@ -175,7 +172,7 @@ with tab1:
175
  if 'data_export' in st.session_state:
176
  st.download_button(
177
  label="Export optimals set",
178
- data=convert_df_from_parquet(st.session_state.data_export),
179
  file_name='MLB_optimals_export.csv',
180
  mime='text/csv',
181
  )
 
80
  return FD_seed
81
 
82
  @st.cache_data
83
+ def convert_df(df):
84
  # IMPORTANT: Cache the conversion to prevent computation on every rerun
85
+ return df.to_csv().encode('utf-8')
 
86
 
87
  dk_raw, fd_raw = init_baselines()
88
 
 
137
  DK_seed_parse = DK_seed_parse[DK_seed_parse['Team_count'].isin(stack_var2)]
138
  data_export_display = DK_seed_parse.head(1000)
139
  st.session_state.data_export_display = data_export_display.copy()
140
+ st.session_state.data_export = DK_seed.copy()
141
+ st.session_state.data_export_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.data_export.iloc[:,0:9].values, return_counts=True)),
 
142
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
143
  st.session_state.data_export_freq['Freq'] = st.session_state.data_export_freq['Freq'].astype(int)
144
  st.session_state.data_export_freq['Exposure'] = st.session_state.data_export_freq['Freq']/(len(st.session_state.data_export_expo['Team']))
 
146
  if 'data_export' in st.session_state:
147
  st.download_button(
148
  label="Export optimals set",
149
+ data=convert_df(st.session_state.data_export),
150
  file_name='MLB_optimals_export.csv',
151
  mime='text/csv',
152
  )
 
163
  FD_seed_parse = FD_seed_parse[FD_seed_parse['Team_count'].isin(stack_var2)]
164
  data_export_display = FD_seed_parse.head(1000)
165
  st.session_state.data_export_display = data_export_display.copy()
166
+ st.session_state.data_export = FD_seed.copy()
167
+ st.session_state.data_export_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.data_export.iloc[:,0:8].values, return_counts=True)),
 
168
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
169
  st.session_state.data_export_freq['Freq'] = st.session_state.data_export_freq['Freq'].astype(int)
170
  st.session_state.data_export_freq['Exposure'] = st.session_state.data_export_freq['Freq']/(len(st.session_state.data_export_expo['Team']))
 
172
  if 'data_export' in st.session_state:
173
  st.download_button(
174
  label="Export optimals set",
175
+ data=convert_df(st.session_state.data_export),
176
  file_name='MLB_optimals_export.csv',
177
  mime='text/csv',
178
  )