Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -80,10 +80,9 @@ def init_FD_seed_frame():
|
|
80 |
return FD_seed
|
81 |
|
82 |
@st.cache_data
|
83 |
-
def
|
84 |
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
85 |
-
|
86 |
-
return working_file.to_csv().encode('utf-8')
|
87 |
|
88 |
dk_raw, fd_raw = init_baselines()
|
89 |
|
@@ -138,9 +137,8 @@ with tab1:
|
|
138 |
DK_seed_parse = DK_seed_parse[DK_seed_parse['Team_count'].isin(stack_var2)]
|
139 |
data_export_display = DK_seed_parse.head(1000)
|
140 |
st.session_state.data_export_display = data_export_display.copy()
|
141 |
-
st.session_state.
|
142 |
-
st.session_state.
|
143 |
-
st.session_state.data_export_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.data_export_expo.iloc[:,0:9].values, return_counts=True)),
|
144 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
145 |
st.session_state.data_export_freq['Freq'] = st.session_state.data_export_freq['Freq'].astype(int)
|
146 |
st.session_state.data_export_freq['Exposure'] = st.session_state.data_export_freq['Freq']/(len(st.session_state.data_export_expo['Team']))
|
@@ -148,7 +146,7 @@ with tab1:
|
|
148 |
if 'data_export' in st.session_state:
|
149 |
st.download_button(
|
150 |
label="Export optimals set",
|
151 |
-
data=
|
152 |
file_name='MLB_optimals_export.csv',
|
153 |
mime='text/csv',
|
154 |
)
|
@@ -165,9 +163,8 @@ with tab1:
|
|
165 |
FD_seed_parse = FD_seed_parse[FD_seed_parse['Team_count'].isin(stack_var2)]
|
166 |
data_export_display = FD_seed_parse.head(1000)
|
167 |
st.session_state.data_export_display = data_export_display.copy()
|
168 |
-
st.session_state.
|
169 |
-
st.session_state.
|
170 |
-
st.session_state.data_export_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.data_export_expo.iloc[:,0:8].values, return_counts=True)),
|
171 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
172 |
st.session_state.data_export_freq['Freq'] = st.session_state.data_export_freq['Freq'].astype(int)
|
173 |
st.session_state.data_export_freq['Exposure'] = st.session_state.data_export_freq['Freq']/(len(st.session_state.data_export_expo['Team']))
|
@@ -175,7 +172,7 @@ with tab1:
|
|
175 |
if 'data_export' in st.session_state:
|
176 |
st.download_button(
|
177 |
label="Export optimals set",
|
178 |
-
data=
|
179 |
file_name='MLB_optimals_export.csv',
|
180 |
mime='text/csv',
|
181 |
)
|
|
|
80 |
return FD_seed
|
81 |
|
82 |
@st.cache_data
|
83 |
+
def convert_df(df):
|
84 |
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
85 |
+
return df.to_csv().encode('utf-8')
|
|
|
86 |
|
87 |
dk_raw, fd_raw = init_baselines()
|
88 |
|
|
|
137 |
DK_seed_parse = DK_seed_parse[DK_seed_parse['Team_count'].isin(stack_var2)]
|
138 |
data_export_display = DK_seed_parse.head(1000)
|
139 |
st.session_state.data_export_display = data_export_display.copy()
|
140 |
+
st.session_state.data_export = DK_seed.copy()
|
141 |
+
st.session_state.data_export_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.data_export.iloc[:,0:9].values, return_counts=True)),
|
|
|
142 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
143 |
st.session_state.data_export_freq['Freq'] = st.session_state.data_export_freq['Freq'].astype(int)
|
144 |
st.session_state.data_export_freq['Exposure'] = st.session_state.data_export_freq['Freq']/(len(st.session_state.data_export_expo['Team']))
|
|
|
146 |
if 'data_export' in st.session_state:
|
147 |
st.download_button(
|
148 |
label="Export optimals set",
|
149 |
+
data=convert_df(st.session_state.data_export),
|
150 |
file_name='MLB_optimals_export.csv',
|
151 |
mime='text/csv',
|
152 |
)
|
|
|
163 |
FD_seed_parse = FD_seed_parse[FD_seed_parse['Team_count'].isin(stack_var2)]
|
164 |
data_export_display = FD_seed_parse.head(1000)
|
165 |
st.session_state.data_export_display = data_export_display.copy()
|
166 |
+
st.session_state.data_export = FD_seed.copy()
|
167 |
+
st.session_state.data_export_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.data_export.iloc[:,0:8].values, return_counts=True)),
|
|
|
168 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
169 |
st.session_state.data_export_freq['Freq'] = st.session_state.data_export_freq['Freq'].astype(int)
|
170 |
st.session_state.data_export_freq['Exposure'] = st.session_state.data_export_freq['Freq']/(len(st.session_state.data_export_expo['Team']))
|
|
|
172 |
if 'data_export' in st.session_state:
|
173 |
st.download_button(
|
174 |
label="Export optimals set",
|
175 |
+
data=convert_df(st.session_state.data_export),
|
176 |
file_name='MLB_optimals_export.csv',
|
177 |
mime='text/csv',
|
178 |
)
|