Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -179,45 +179,26 @@ with tab1:
|
|
179 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
|
180 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
|
181 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
182 |
-
if 'data_export_display' in st.session_state:
|
183 |
-
time.sleep(3)
|
184 |
-
st.session_state.data_export_freq = pd.DataFrame(calculate_DK_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
|
185 |
-
st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
|
186 |
else:
|
187 |
st.session_state.working_seed = DK_seed.copy()
|
188 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
|
189 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
|
190 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
191 |
-
if 'data_export_display' in st.session_state:
|
192 |
-
time.sleep(3)
|
193 |
-
st.session_state.data_export_freq = pd.DataFrame(calculate_DK_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
|
194 |
-
st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
|
195 |
|
196 |
elif site_var1 == 'Fanduel':
|
197 |
if 'working_seed' in st.session_state:
|
198 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
199 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
200 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
201 |
-
if 'data_export_display' in st.session_state:
|
202 |
-
time.sleep(3)
|
203 |
-
st.session_state.data_export_freq = pd.DataFrame(calculate_FD_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
|
204 |
-
st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
|
205 |
else:
|
206 |
st.session_state.working_seed = FD_seed.copy()
|
207 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
208 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
209 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
210 |
-
if 'data_export_display' in st.session_state:
|
211 |
-
time.sleep(3)
|
212 |
-
st.session_state.data_export_freq = pd.DataFrame(calculate_FD_value_frequencies(st.session_state.working_seed), columns=['Player', 'Exposure'])
|
213 |
-
st.session_state.data_export_freq = st.session_state.data_export_freq.sort_values(by='Exposure', ascending=False)
|
214 |
|
215 |
with st.container():
|
216 |
if 'data_export_display' in st.session_state:
|
217 |
st.table(st.session_state.data_export_display, use_container_width=True)
|
218 |
-
with st.container():
|
219 |
-
if 'data_export_freq' in st.session_state:
|
220 |
-
st.table(st.session_state.data_export_freq, use_container_width=True)
|
221 |
|
222 |
if st.button("Prepare data export", key='data_export'):
|
223 |
data_export = st.session_state.working_seed.copy()
|
@@ -255,10 +236,14 @@ with tab2:
|
|
255 |
elif contest_var1 == 'Custom':
|
256 |
Contest_Size = st.number_input("Insert contest size", value=None, placeholder="Type a number under 10,000...")
|
257 |
Contest_Size = Contest_Size.astype(int)
|
258 |
-
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Average', 'Not Very'))
|
259 |
if strength_var1 == 'Not Very':
|
260 |
sharp_split = 500000
|
|
|
|
|
261 |
elif strength_var1 == 'Average':
|
|
|
|
|
262 |
sharp_split = 100000
|
263 |
elif strength_var1 == 'Very':
|
264 |
sharp_split = 10000
|
|
|
179 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
|
180 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
|
181 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
|
|
|
|
|
|
|
|
182 |
else:
|
183 |
st.session_state.working_seed = DK_seed.copy()
|
184 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
|
185 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
|
186 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
|
|
|
|
|
|
|
|
187 |
|
188 |
elif site_var1 == 'Fanduel':
|
189 |
if 'working_seed' in st.session_state:
|
190 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
191 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
192 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
|
|
|
|
|
|
|
|
193 |
else:
|
194 |
st.session_state.working_seed = FD_seed.copy()
|
195 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
196 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
197 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
|
|
|
|
|
|
|
|
198 |
|
199 |
with st.container():
|
200 |
if 'data_export_display' in st.session_state:
|
201 |
st.table(st.session_state.data_export_display, use_container_width=True)
|
|
|
|
|
|
|
202 |
|
203 |
if st.button("Prepare data export", key='data_export'):
|
204 |
data_export = st.session_state.working_seed.copy()
|
|
|
236 |
elif contest_var1 == 'Custom':
|
237 |
Contest_Size = st.number_input("Insert contest size", value=None, placeholder="Type a number under 10,000...")
|
238 |
Contest_Size = Contest_Size.astype(int)
|
239 |
+
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
|
240 |
if strength_var1 == 'Not Very':
|
241 |
sharp_split = 500000
|
242 |
+
elif strength_var1 == 'Below Average':
|
243 |
+
sharp_split = 300000
|
244 |
elif strength_var1 == 'Average':
|
245 |
+
sharp_split = 250000
|
246 |
+
elif strength_var1 == 'Above Average':
|
247 |
sharp_split = 100000
|
248 |
elif strength_var1 == 'Very':
|
249 |
sharp_split = 10000
|