Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,8 +10,6 @@ import pandas as pd
|
|
10 |
import streamlit as st
|
11 |
import gspread
|
12 |
import pymongo
|
13 |
-
import certifi
|
14 |
-
ca = certifi.where()
|
15 |
|
16 |
@st.cache_resource
|
17 |
def init_conn():
|
@@ -176,66 +174,6 @@ with tab2:
|
|
176 |
for key in st.session_state.keys():
|
177 |
del st.session_state[key]
|
178 |
DK_seed, FD_seed, dk_raw, fd_raw = init_baselines()
|
179 |
-
|
180 |
-
# slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
|
181 |
-
# site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
182 |
-
# if site_var1 == 'Draftkings':
|
183 |
-
# raw_baselines = dk_raw
|
184 |
-
# elif site_var1 == 'Fanduel':
|
185 |
-
# raw_baselines = fd_raw
|
186 |
-
|
187 |
-
# contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large'))
|
188 |
-
# if contest_var1 == 'Small':
|
189 |
-
# Contest_Size = 1000
|
190 |
-
# elif contest_var1 == 'Medium':
|
191 |
-
# Contest_Size = 5000
|
192 |
-
# elif contest_var1 == 'Large':
|
193 |
-
# Contest_Size = 10000
|
194 |
-
# elif contest_var1 == 'Massive':
|
195 |
-
# Contest_Size = 100000
|
196 |
-
# strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Not Very', 'Average', 'Very'))
|
197 |
-
# if strength_var1 == 'Not Very':
|
198 |
-
# sharp_split = [400000,100000]
|
199 |
-
# elif strength_var1 == 'Average':
|
200 |
-
# sharp_split = [500000,200000]
|
201 |
-
# elif strength_var1 == 'Very':
|
202 |
-
# sharp_split = [500000,300000]
|
203 |
|
204 |
with col2:
|
205 |
-
st.write("Things will go here")
|
206 |
-
# if site_var1 == 'Draftkings':
|
207 |
-
# st.session_state.Sim_Winner_Frame = DK_seed.head(Contest_Size)
|
208 |
-
# st.session_state.Sim_Winner_Display = DK_seed.head(Contest_Size)
|
209 |
-
# st.session_state.Sim_Winner_Export = DK_seed
|
210 |
-
# st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:9].values, return_counts=True)),
|
211 |
-
# columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
212 |
-
# st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
|
213 |
-
# st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(Contest_Size)
|
214 |
-
|
215 |
-
# if 'Sim_Winner_Export' in st.session_state:
|
216 |
-
# st.download_button(
|
217 |
-
# label="Export 500k optimals",
|
218 |
-
# data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
|
219 |
-
# file_name='MLB_consim_export.csv',
|
220 |
-
# mime='text/csv',
|
221 |
-
# )
|
222 |
-
# st.dataframe(st.session_state.Sim_Winner_Display.style.format(precision=2), height=500, use_container_width=True)
|
223 |
-
# st.dataframe(st.session_state.player_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
|
224 |
-
# elif site_var1 == 'Fanduel':
|
225 |
-
# st.session_state.Sim_Winner_Frame = FD_seed.head(Contest_Size)
|
226 |
-
# st.session_state.Sim_Winner_Display = FD_seed.head(Contest_Size)
|
227 |
-
# st.session_state.Sim_Winner_Export = FD_seed
|
228 |
-
# st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:8].values, return_counts=True)),
|
229 |
-
# columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
230 |
-
# st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
|
231 |
-
# st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(Contest_Size)
|
232 |
-
|
233 |
-
# if 'Sim_Winner_Export' in st.session_state:
|
234 |
-
# st.download_button(
|
235 |
-
# label="Export 500k optimals",
|
236 |
-
# data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
|
237 |
-
# file_name='MLB_consim_export.csv',
|
238 |
-
# mime='text/csv',
|
239 |
-
# )
|
240 |
-
# st.dataframe(st.session_state.Sim_Winner_Display.style.format(precision=2), height=500, use_container_width=True)
|
241 |
-
# st.dataframe(st.session_state.player_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
|
|
|
10 |
import streamlit as st
|
11 |
import gspread
|
12 |
import pymongo
|
|
|
|
|
13 |
|
14 |
@st.cache_resource
|
15 |
def init_conn():
|
|
|
174 |
for key in st.session_state.keys():
|
175 |
del st.session_state[key]
|
176 |
DK_seed, FD_seed, dk_raw, fd_raw = init_baselines()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
with col2:
|
179 |
+
st.write("Things will go here")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|