Multichem commited on
Commit
ab169e9
·
verified ·
1 Parent(s): 8f0017a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -63
app.py CHANGED
@@ -10,8 +10,6 @@ import pandas as pd
10
  import streamlit as st
11
  import gspread
12
  import pymongo
13
- import certifi
14
- ca = certifi.where()
15
 
16
  @st.cache_resource
17
  def init_conn():
@@ -176,66 +174,6 @@ with tab2:
176
  for key in st.session_state.keys():
177
  del st.session_state[key]
178
  DK_seed, FD_seed, dk_raw, fd_raw = init_baselines()
179
-
180
- # slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
181
- # site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
182
- # if site_var1 == 'Draftkings':
183
- # raw_baselines = dk_raw
184
- # elif site_var1 == 'Fanduel':
185
- # raw_baselines = fd_raw
186
-
187
- # contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large'))
188
- # if contest_var1 == 'Small':
189
- # Contest_Size = 1000
190
- # elif contest_var1 == 'Medium':
191
- # Contest_Size = 5000
192
- # elif contest_var1 == 'Large':
193
- # Contest_Size = 10000
194
- # elif contest_var1 == 'Massive':
195
- # Contest_Size = 100000
196
- # strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Not Very', 'Average', 'Very'))
197
- # if strength_var1 == 'Not Very':
198
- # sharp_split = [400000,100000]
199
- # elif strength_var1 == 'Average':
200
- # sharp_split = [500000,200000]
201
- # elif strength_var1 == 'Very':
202
- # sharp_split = [500000,300000]
203
 
204
  with col2:
205
- st.write("Things will go here")
206
- # if site_var1 == 'Draftkings':
207
- # st.session_state.Sim_Winner_Frame = DK_seed.head(Contest_Size)
208
- # st.session_state.Sim_Winner_Display = DK_seed.head(Contest_Size)
209
- # st.session_state.Sim_Winner_Export = DK_seed
210
- # st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:9].values, return_counts=True)),
211
- # columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
212
- # st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
213
- # st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(Contest_Size)
214
-
215
- # if 'Sim_Winner_Export' in st.session_state:
216
- # st.download_button(
217
- # label="Export 500k optimals",
218
- # data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
219
- # file_name='MLB_consim_export.csv',
220
- # mime='text/csv',
221
- # )
222
- # st.dataframe(st.session_state.Sim_Winner_Display.style.format(precision=2), height=500, use_container_width=True)
223
- # st.dataframe(st.session_state.player_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
224
- # elif site_var1 == 'Fanduel':
225
- # st.session_state.Sim_Winner_Frame = FD_seed.head(Contest_Size)
226
- # st.session_state.Sim_Winner_Display = FD_seed.head(Contest_Size)
227
- # st.session_state.Sim_Winner_Export = FD_seed
228
- # st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:8].values, return_counts=True)),
229
- # columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
230
- # st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
231
- # st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(Contest_Size)
232
-
233
- # if 'Sim_Winner_Export' in st.session_state:
234
- # st.download_button(
235
- # label="Export 500k optimals",
236
- # data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
237
- # file_name='MLB_consim_export.csv',
238
- # mime='text/csv',
239
- # )
240
- # st.dataframe(st.session_state.Sim_Winner_Display.style.format(precision=2), height=500, use_container_width=True)
241
- # st.dataframe(st.session_state.player_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
 
10
  import streamlit as st
11
  import gspread
12
  import pymongo
 
 
13
 
14
  @st.cache_resource
15
  def init_conn():
 
174
  for key in st.session_state.keys():
175
  del st.session_state[key]
176
  DK_seed, FD_seed, dk_raw, fd_raw = init_baselines()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177
 
178
  with col2:
179
+ st.write("Things will go here")